Forces (and motion 1)

1. Scalar and

vector

Distance is a scalar quantity (magnitude only) and measures how far something moves. Displacement is a vector quantity (magnitude and direction) and measures how far something is from its starting point.
Speed is a scalar quantity, the speed of a moving object is rarely constant and an average speed is often calculated. Velocity is a vector quantity. It is a measure of the displacement divided by the time taken to move.

5. Terminal velocity

Initial acceleration due to weight.
Drag forces increasing, but still accelerating.

Drag balances weight and terminal velocity reached.

Larger surface area means the drag force increases causing deceleration. Lower terminal velocity reached

4. Velocity and acceleration

 distance travelled $=$ velocity \times time (m)(m / s)

Learn

$$
\underset{\left(\mathrm{m} / \mathrm{s}^{2}\right)}{\text { acceleration }}=\frac{\text { change in velocity }(\mathrm{m} / \mathrm{s})}{\text { time }(\mathrm{s})}
$$

Horizontal point (zero slope) implies zero velocity.

Forces (and motion 2)

6. Newton's laws of motion

When two objects interact, the forces are equal in size, but opposite in direction

force $=$ mass \times acceleration
(N) $\quad(\mathrm{kg}) \quad\left(\mathrm{m} / \mathrm{s}^{2}\right)$

7. Stopping distances

Thinking distance is the distance travelled Thinking Distance while a driver reacts to a situation. 20 mph

Thinking distance may be affected by:

- tiredness
- drugs
- alcohol
- distractions e.g. mobile phone.

Braking distance is the distance travelled while the brakes are applied. ${ }^{60}$

50 mph

$=53$ metres or 13 car lengths

60 mph	18 m
$=$	73 metres or 18 car lengths

A vehicle's braking distance may be affected by:

$$
70 \mathrm{mph} \quad 21 \mathrm{~m}
$$

When a force is applied to the brakes, work is done

- the condition of the road
- the weather
- the condition of the car
- the mass of the vehicle.
by friction. This decreases the kinetic energy store of the car, but increases the thermal store of the brake and surroundings, increasing the temperature.

8. Momentum [Highertier]

In a closed system, momentum is conserved; the total momentum before a collision is equal to the total momentum after a collision.

Learn
$\underset{(\mathrm{kgm} / \mathrm{s})}{\operatorname{momentum}}=\underset{(\mathrm{kg})}{\operatorname{mass}} \times \underset{(\mathrm{m} / \mathrm{s})}{\text { velocity }} / \mathrm{p}$
9. Change in (Separate For a change in momentum, force and time Momentum

Physics only) are inversely proportional; if you can increase the time of a collision you can decrease the force involved.
Seat belts, air bags, crash mats, cycle helmets and cushioned surfaces for playgrounds all use this idea.

