Circuit Electricity 1

1. Circuit symbols

You must be able to remember the circuit symbols for these components, and use them when drawing a circuit:

Remember: when you draw a circuit diagram, the lines (wires) must be straight and the circuit must be complete!

3. Current

- Current is the flow of electrical charge around a circuit.
- It's measured in amps (A) using an ammeter connected in series with the component.
- A circuit must include a source of potential difference (a power source) in order for current to flow. We can calculate the charge flow using:
charge flow $=$ current \times time
(s)

You can use the equation triangle to re-arrange this:

2. Charge

- Metals are conductors of electricity
- Non-metals are insulators (poor conductors)
- This is due to their bonding:

Metallic bonding creates a 'sea of delocalised electrons' that can carry energy around a circuit.

- The unit of charge flow is the coulomb (C). This represents a specific large number of electrons. 1 coulomb is equal to 6×10^{19} electrons.

4. Potential difference

- Potential difference (or voltage) is the driving force that pushes the charge around a circuit. It is the difference in energy between two points on a circuit.
- Potential difference is the energy per unit of charge:
 component.
- Potential difference can be supplied using a power source (e.g. a battery)

5. Resistance

- Resistance is something that slows down the current.
- It's measured in ohms (Ω).
- The bigger the resistance of a component, the less current gets through. You can calculate the total resistance in a series circuit using:
total resistance
add together the
$\boldsymbol{R}_{\text {total }}=\boldsymbol{R}_{\mathbf{1}}+\boldsymbol{R}_{\mathbf{2}}+\ldots$
individual resistances
total resistance of two resistors is less than the resistance
st individual resistor.

Circuit Electricity 2

- The current through a circuit depends on the potential difference and resistance.
- If the potential difference is constant, then the current will decrease as resistance is increased.
- Ohm's Law states that current is directly proportional to potential difference for an ohmic conductor (if the temperature remains constant)

The following equation is used to link potential difference, current and resistance:
potential difference $=$ current \times resistance (V)

Learn

(Ω

7. Required Practical: How does the length of a wire affect its resistance?

- You can calculate the resistance of a wire if you measure the current and potential difference.
- Changing the length of the wire and taking measurements will allow you to see if the resistance changes.

> The ammeter measures the current through the circuit.
> The voltmeter measures the potential difference across the wire.

As the current increases, the wire heats up which causes its resistance to increase. This reduces the accuracy of the experiment.

- You can increase the accuracy by:

1. stopping the current between readings to let the wire cool
2. using a low current to stop the wire heating up.

- You can increase the precision by using pointed contacts to connect to the wire so the uncertainty of the measurement is reduced.

8. Series and parallel circuits

There are two types of circuit: series and parallel.

Parallel Circuits

- The components are connected in more than one loop.
- If one bulb breaks, the other branches will continue to work.
- The current is shared between each branch.
- The potential difference is the same across each component.
- The total resistance is less than the smallest individual resistance.
- If you add more bulbs, they all stay the same brightnoss
branches

Series Circuits

- All the components are connected in one loop.
- If one bulb breaks, the whole circuit stops working.
- The current is the same everywhere.
- The potential difference is shared between components.
- The total resistance is the sum of all the individual resistances.
- If you add more bulbs, they all get dimmer.

-

Circuit electricity 3
There are two types of conductor:
There are two types of conductor:
Ohmic
9. Required Practical: I-V characteristics of different

Non-Ohmic

components

- The resistance remains constant when you change the current
- The current is directly proportional to the potential difference
- If you drew a graph of I against V , it would be a straight line through $(0,0)$

Example: a resistor at constant temp.

10. Thermistors and LDRs

Light Dependent Resistor

As light intensity increases the resistance decreases.
They are not inversely proportional, it is an inverse square relationship.
light intensity $=\frac{1}{\text { distance }^{2}}$

Light Dependent Resistor (LDR)

The resistance decreases as the light gets brighter.
Example: street lights use these so they turn on when it gets dark

Thermistor

The resistance decreases as temperature increases.
Example: used in thermostats to turn on the heating when it gets cold

Thermistor

Temperature is inversely proportional to resistance. This can be proved using the table of results.
The product of the IV \times DV will be the same for every row of data.

Applications

