Materials

Metals and Acids

- Metals react with acids to produce a salt plus hydrogen.
- Example
 - metal + acid → salt + hydrogen
- The name of the salt is created by combining the name of metal with the name of the acid.
- Nitric acid makes nitrate salts, hydrochloric acid makes chloride salts, and sulphuric acid makes sulphate salts.
- Example iron + sulphuric acid → iron sulphate + hydrogen
- $Fe + H_2SO_4 \rightarrow FeSO_4 + H_2$
- Hydrogen is a gas, this creates fizzing.
- Hydrogen creates a squeaky pop when ignited with a lit splint.

Polymers and composites

- Polymers are solids that are made of many small units or "monomers".
- Common polymers include polyethene (used to make plastic bags), PVC (used to make water pipes), Nylon and Lycra (which can be used to make fabrics that stretch).
- · Polymers are chemically unreactive solids at room temperature, can be moulded into shape, are electrical and thermal insulators and are strong and hardwearing. • Composites are materials that are made from two or more different types of material.
- Composites combine the properties of the materials they are made of to make stronger or more functional materials.
- Common composites include steel reinforced concrete, MDF, and fibreglass.

Ceramics

bent

What are Polymers?

- · Ceramics are solids made from baking material in a very hot oven
- · They are very hard, tough, waterproof, have high melting points, are strong under compression, are unreactive and are
- electrical and thermal insulators · Ceramics are often brittle

so will break if dropped or

Common ceramics are bricks, pottery, glass, porcelain, tiles and cement

Reactivity series

most reactive Potassium Sodium Calcium Magnesium Aluminium Carbon

Metals and Oxygen

- An example of oxidation is when an element gains oxygen. • Metals are normally found as ores where the metals have
- reacted with elements or compounds from the environment. Common ores are metal oxides where the metals have
- reacted with oxygen. Example -

metal + oxygen → metal oxide magnesium + oxygen → magnesium oxide $2Mg + O_2 \rightarrow 2MgO$

Oxidation and reduction

- · Carbon can be used to displace metals from their metal oxide. When carbon is used to extract metals from their
- ores it is called smelting. • Carbon can only be used to extract metals that are

lower on the reactivity series. Example iron oxide + carbon → iron + carbon dioxide

 $2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$ · Oxidation is when an element gains oxygen.

- Reduction is when an element loses oxygen. • The more reactive element will gain oxygen.
- The least reactive element will lose oxygen.
- Redox reactions are a type of displacement reaction where both oxidation and reduction occur

Conservation of Mass

Example -

- In a chemical reaction the number and type of element remains the same, but the atoms change positions.
- In a chemical reaction bonds are broken, and new bonds can be formed.

2*32 g

• The mass of the reactants and the mass of the products are always the same.

16 g

2*18 g

Displacement

Example –

 A more reactive element will displace a less reactive element from its compound in a displacement reaction. Less reactive

Mg + CuCl₂ → MgCl₂ + Cu

magnesium

+ copper (II) chloride → magnesium chloride +(copper

in the same reaction.

More reactive

- Metals and non-metals can be arranged in order of reactivity.
- Non-metals; hydrogen and carbon are also part of the reactivity series.