PYTHAGORAS AND TRIGONOMETRY						
Keywords:	Hypotenuse / Opposite / Adjacent / Complementary angle / Square Root / Inverse					
Definition / Description:	Hypotenuse : The longest side of a right angled triangle	Opposite: The side opposite the given angle	Adjacent: The side in between the given angle and the right angle	Complementary : Angles to add up to 90°	Square Root: A number which produces a specified quantity when multiplied by itself.	Inverse: The reverse or opposite
Knowledge points:	Calculate missing sides of a right angled triangle Use Pythagoras to solve problems in 3D Work fluently with the hypotenuse, opposite and adjacent sides Use the tangent, sine and cosine ratio to find missing side lengths Use sine, cosine and tangent to find missing angles Select the appropriate method to solve right-angled triangle problems					
Knowledge point examples:	Finding the hypotenuse: $a^{2} + b^{2} = c^{2}$ $5^{2} + 12^{2} = x^{2}$ $25 + 144 = x^{2}$ $169 = x^{2}$ $\sqrt{169} = x$ x = 13cm x cm 5cm	Finding the SI Side	horter 3D Py $a^{2} - b^{2} = a^{2}$ $a^{2} - 8^{2} = x^{2}$ $b^{2} - 8^{2} = x^{2}$ $a^{36} = x^{2}$ $\sqrt{36} = x$ x = 6cm $AG = \frac{\sqrt{7^{2}}}{\sqrt{76}}$ = 8.6	thagora 4cm_{D} 7 cm 3cm_{F} $\sqrt{a^2 + b^2 + c^2}$ $\frac{\sqrt{a^2 + b^2 + c^2}}{2 + 3^2 + 4^2}$ cm	SOHCAHTOA: Side Label your triangle and select the correspondence $\tan \theta = \frac{xpp}{adj}$ $\tan 40 = \frac{x}{5}$ $5 \times \tan 40 = x$ 4.19 cm = x 40°	SOHCAHTOA : Angle Label, select ratio and Do not forget to use sin ⁻¹ when finding the angle Let angle ABC = θ $\sin \theta = \frac{6}{10}$ $\theta = \sin^{-1}\frac{6}{10}$ $\theta = 36.87^{\circ}$ (2 dp) $\theta = 36.87 + 36.22$
Linked Knowledge Maps:	Further Trigonome	try / 3D Shape / 2D) Shape / Bearings	3		