Keywords:

Scale factor / Ratio / Enlargement / Similar / Congruent / Identical /

| Definition / | Scale factor: The
 ratio of the
 enlarged distance
 to the original
 Description: | Ratio: A part to
 part comparison | Enlargement:
 Changing the size
 of a shape by a
 given scale factor | Similar: Two
 shapes whose
 sides are in
 proportion to one
 another | Congruent: How
 to mathematically
 describe 2 shapes
 that are identical | Identical: Exactly |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| alike | | | | | | |

Knowledge points:
 Use the basic congruence criteria for triangles (SSS, SAS, ASA, RHS)

Knowledge point examples:

Understand and identify congruent triangles; prove congruency using formal arguments

Condition for Congruency = Angle, Side, Angle (ASA)

Condition for Congruency = Side, Angle, Side (SAS)

Condition for
Congruency = Right Angle, Hypotenuse, Side (RHS)

Use congruence and

 similarity to prove missing angles and sidesRecognise similar shapes when rotated or reflected; apply mathematical reasoning
$A B C$ is a straight line. Work out x.

Triangle $A B$ and Triangle $B C$ are both isosceles triangles $>$ Angles at A and B are equal and angles at C and corresponding base are equal.
Angle at B in Triangle BC: $180^{\circ}-\left(40^{\circ}+40^{\circ}\right)=100^{\circ}$ Angles on a straight line total 180°, therefore angle at B in Triangle $A B=80^{\circ}$. Angles at A and B are equal, so x is $180^{\circ}-\left(80^{\circ}+80^{\circ}\right)=$ 20°.

Compare lengths, areas and volumes using ratio notation
Make links to similarity and scale factors

Write the ratio perimeter A : perimeter B in its simplest form.

Perimeter A:
$2(7+2)=18 \mathrm{~cm}$
Perimeter B:
$4+4+4 \mathrm{~cm}+4$
$=16 \mathrm{~cm}$
$\left.\begin{array}{r}\text { Ratio }=18: 16 \\ \underline{9: 8}\end{array}\right) \div 2$
Write the ratio area A : area
B in its simplest form.
Area $A: 7 \times 2=14 \mathrm{~cm}^{2}$
Area B: $4 \times 4=16 \mathrm{~cm}^{2}$
Ratio $=14: 16) \div 2$

Apply the concepts of congruence and similarity, including relationships between lengths, areas and volumes

These boxes are similar.

What is the ratio of the volume of box A to the volume of box B ?

Ratios of side lengths = $2 \mathrm{~cm}: 6 \mathrm{~cm}=1: 3$ (in simplest form)

If length ratio is $a: b$, then area ratio is $a^{2}: b^{2}$ and volume ratio is $a^{3}: b^{3}$.

Therefore, ratio of volumes = $1^{3}: 3^{3}=1: 27$

