COMPOUND MEASURES

Keywords: Compound / Density / Pressure / Newton

Definition / Description:	Compound: A Mixture	Density: an objects mas per unit volume	Pressure: Force per unit area	Newton: Unit for weight and force
Knowledge points:	Speed Distance, Time: Speed = Distance ÷ Time	Average Speed: Total Distance ÷ Total Time	Density: Density = Mass ÷ Volume	Pressure: Pressure = Force ÷ Area
Knowledge point examples:	If I travel 72 miles in 3 hours what is my speed? Speed = Distance \div Time 72 miles \div 3 hours = 24mph Mark cycles 42 km at an average speed of 14 km/h. How long does it take him? Time = distance \div Speed 42km \div 14km/h = 3 hours A bird flies for 40 minutes at an average speed of 11m/s. How far does the bird fly in kilometres? 40 minutes = 2400 seconds Distance = Speed x Time 11m/s x 2400s = 26400m = 26.4km	A car travels 60km at 30 km/h and then a further 180km at 160 km/h. Find: a) the total time taken in hours: Time = distance ÷ Speed = = 60 ÷ 30 = 2 hours = 180 ÷ 160 = 1.125 hours = 3.125hrs b) the average speed for the whole journey Speed = Distance ÷ Time = (60 + 180) ÷ 3.125 = 76.8 km/h	A piece of silver has a mass of 42g and a volume of 4cm ³ . Work out the density of silver Density = Mass \div Volume =42g \div 4cm ³ = 10.5 g/cm³ A 50g piece of wood which has a density of 0.4g/cm ³ Work out the volume of the block. Volume = Mass \div Density 50g \div 0.4g/cm ³ = 125cm³	A force of 30 Newtons is applied to an area of 1.5 m^2 . Work out the pressure in N/m ² Pressure = Force ÷ Area $30N \div 1.5m^2 = 20N/m^2$ A force is applied to an area of 4.5 m^2 . It produces pressure of 12 N/m ² . Work out the force in Newtons. Force = Pressure x Area $12N/m^2 x 4.5m^2 = 54N$
Linked Knowledge Maps	Non-compound measures / Bou	unds		