Keywords:	Compound / Density / Pressure / Newton			
Definition / Description:	Compound: A Mixture	Density: an objects mas per unit volume	Pressure: Force per unit area	Newton: Unit for weight and force
Knowledge points:	Speed Distance, Time: Speed = Distance \div Time	Average Speed: Total Distance \div Total Time	Density: Density $=$ Mass \div Volume	Pressure: Pressure = Force \div Area
Knowledge point examples:	If I travel 72 miles in 3 hours what is my speed? Speed = Distance \div Time 72 miles $\div 3$ hours $=\underline{\mathbf{2 4 m p h}}$ Mark cycles 42 km at an average speed of $14 \mathrm{~km} / \mathrm{h}$. How long does it take him? Time $=$ distance \div Speed $42 \mathrm{~km} \div 14 \mathrm{~km} / \mathrm{h}=\underline{3 \text { hours }}$ A bird flies for 40 minutes at an average speed of $11 \mathrm{~m} / \mathrm{s}$. How far does the bird fly in kilometres? 40 minutes $=2400$ seconds Distance $=$ Speed x Time $11 \mathrm{~m} / \mathrm{s} \times 2400 \mathrm{~s}=26400 \mathrm{~m}$ $=\mathbf{2 6 . 4} \mathrm{km}$	A car travels 60 km at $30 \mathrm{~km} / \mathrm{h}$ and then a further 180 km at 160 km/h. Find: a) the total time taken in hours: $\begin{aligned} & \text { Time }=\text { distance } \div \text { Speed }= \\ & =60 \div 30=2 \text { hours } \\ & =180 \div 160=1.125 \text { hours } \\ & =\mathbf{3 . 1 2 5} \mathbf{h r s} \end{aligned}$ b) the average speed for the whole journey $=(60+180) \div 3.125$ $=76.8 \mathrm{~km} / \mathrm{h}$	A piece of silver has a mass of 42 g and a volume of $4 \mathrm{~cm}^{3}$. Work out the density of silver Density $=$ Mass \div Volume $=42 \mathrm{~g} \div 4 \mathrm{~cm}^{3}=10.5 \mathrm{~g} / \mathrm{cm}^{3}$ A 50 g piece of wood which has a density of $0.4 \mathrm{~g} / \mathrm{cm}^{3}$ Work out the volume of the block. Volume $=$ Mass \div Density $50 \mathrm{~g} \div 0.4 \mathrm{~g} / \mathrm{cm}^{3}=125 \mathrm{~cm}^{3}$	A force of 30 Newtons is applied to an area of $1.5 \mathrm{~m}^{2}$. Work out the pressure in $\mathrm{N} / \mathrm{m}^{2}$ Pressure $=$ Force \div Area $30 \mathrm{~N} \div 1.5 \mathrm{~m}^{2}=20 \mathrm{~N} / \mathrm{m}^{2}$ A force is applied to an area of $4.5 \mathrm{~m}^{2}$. It produces pressure of 12 $\mathrm{N} / \mathrm{m}^{2}$. Work out the force in Newtons. Force $=$ Pressure \times Area $12 \mathrm{~N} / \mathrm{m}^{2} \times 4.5 \mathrm{~m}^{2}=\underline{54 \mathrm{~N}}$
Linked Knowledge Maps	Non-compound measures / Bounds			

