3D SHAPE

Keywords:	Volume / Prism / Net / Face / Cross-section / Surface area / Pyramid							
Definition / Description:	Volume: The amount of space in a 3D container	Prism: A 3D shape with a uniform cross-section	Net: A surface th can be fol in a solid		Face: A flat surface of a solid shape	Cross-Section: A slice cut through at an angle 90° to its axis	Surface Area: Total area of a solids exterior surface	Pyramid: A solid shape with triangular faces that meet at a vertex
Knowledge points:	Nets	Plans and elevation represent a 3D sha	– 2D ations of	V =	ume of prisms: Cross Section ength	Surface area of prisms: Total area of all faces	Volume of a Pyramid – The volume of a pyramid is $\frac{1}{3}$ the volume of a prism.	Spheres: $V = \frac{4}{3}\pi r^3$ $SA = 4\pi r^2$
Knowledge point examples:	Triang	Front Eleva	on	Volu =60 = 36	60cm ³ 6m 14 Ime = 6- x 4 x 4	Surface Area = $(6 \times 7) + (6 \times 7) +$ $(7 \times 12) + (7 \times 12) +$ $+ (12 \times 6) + (12 \times 6) +$ $= 2 \times (6 \times 7) + (7 \times 12) +$ $+ (12 \times 6) = 270 \text{m}^{2}$ $^{\text{cm}}$ $\pi \times 14^{2} = 616$ $2 \times \pi \times 14 \times 80$ $= 7037$ $616 + 616 + 7037$	$V = \frac{1}{3} \times 3 \times 3 \times 10$ $V = \frac{1}{3} \times 90$ $V = 30 \text{ m}^{3}$ $V = \frac{1}{3} \times \pi \times 4^{2} \times 10$ $V = \frac{1}{3} \times 160 \pi$ $V = 167.6 \text{ m}^{3}$	Volume = $\frac{4}{3} \times \pi \times 5^{3}$ $= \frac{500}{3} \pi$ $\approx 523.6 \text{ cm}^{3}$ Surface Area = $4 \times \pi \times 5^{2}$ $= 100\pi$ $\approx 314.2 \text{ cm}^{2}$
Linked Knowledge	Pythagoras and Trigonometry / Compound and non- compound measures					616 + 616 + 7037 = 8 720 cm ²		

Maps