VECTORS

Keywords: Vector / Magnitude / Parallel / Scalar

Definition / Description:

Vector: a quantity with size and direction

Magnitude: The size of a vector (length)

Parallel: Two lines that never meet

Scalar: A quantity that has only magnitude

Knowledge points:

Knowledge

 point examples:
$\binom{-9}{15}$

Move 9 places
to the LEFT and 15 places UP

Parallel vectors:
 Vectors that are multiples of one subtracting vectors:

 another. If one vector is parallel to another but a different size, they are SCALAR MULTIPLEs$\mathbf{a}=\binom{2}{4} \mathbf{b}=\binom{-2}{-4}$ Vectors \mathbf{a} and \mathbf{b} are parallel and scalar multiples (multiple of -1)
$\mathbf{c}=\binom{4}{8} \mathbf{b}=\binom{3}{6}$
Vectors \mathbf{c} and \mathbf{d} are parallel and scalar multiples (multiple of -1)

Adding and Multiplying Adding vectors is equivalent to applying one vector followed by the other

$$
\mathbf{a}=\binom{5}{3} \mathbf{b}=\binom{3}{-2}
$$

$$
\mathbf{p}=\binom{2}{-3}
$$

$\mathbf{a}+\mathbf{b}=\binom{5+2}{3+-2}$

$$
2 p=\binom{2 \times 2}{2 \times-3}=\binom{4}{-6}
$$

$$
-\mathbf{p}=\binom{-1 \times 2}{-1 \times-3}=\binom{-\mathbf{2}}{\mathbf{3}}
$$

Vector geometry:

a) $\overrightarrow{\mathrm{AO}}=-\mathbf{a}$
b) $\overrightarrow{\mathrm{AB}}=-\mathbf{a}+\mathbf{b}$
c) $\overrightarrow{\mathrm{BA}}=-\mathbf{b}+\mathbf{a}$

