DIRECT AND INVERSE PROPORTION

Keywords:	Constant / Variable / Inverse / Proportionality				
Definition / Description :	Constant: An unvarying number or quantity	Variable: A quantity that can take a range of values	Inverse: The reverse or opposite		Proportionality: Quantities varying in a ratio
Knowledge points:	Direct proportion: When one variable decreases the other increases	Inverse Proportion: When one variable increases the other decreases	Algebraic Direct proportion: $y=\frac{k}{x}$	Algebraic Inverse Proportion: $y=k x$	Graphical representations
Knowledge point examples:	Keith buys 6 pencils for 90p How much would 11 pencils cost? 6 pencils: 90p 1 pencil: 15 p $\downarrow \div 6$ 11penciels: 165p	If 6 men take 24 days to build a house, how long will it take 4 men to build the house? 6 men: 24 days 1 man $: 144$ days $\times 6$ 4 men $: 36$ days $\mid \div 4$	The amount of paint required to paint a wall is directly proportional to the area of the wall. 2 litres of paint are required for a wall of $15 \mathrm{~m}^{2}$ Work out a formula for p paint required for a wall with an area of $a \mathrm{~m}^{2}$ $A=\mathrm{k} \times p$ $\begin{gathered} \mathrm{K}=15 \div 2=7.5 \\ A=7.5 p \end{gathered}$ How much wall could I cover with 6 litres of paint? $\begin{gathered} A=7.5 \times 6 \\ A=45 m^{2} \end{gathered}$	H is inversely proportional to the cube of f. When $h=12.5, f$ $=2$ Find the value of h when $\begin{aligned} & f=5 . \\ & h=\mathrm{k} \div f^{3} \\ & \mathrm{~K}=h \times f^{3} \\ & \mathrm{~K}=12.5 \times 2^{3}= \\ & 100 \\ & h=100 \div f^{3} \end{aligned}$ When $f=5$ $h=100 \div 5^{3}=0.8$	

Linked	Notation and manipulation
Knowledge	Solving Linear Equations
Maps	Measures
	Ratio

