Sequences

Keywords: \quad Arithmetic / nth term / Geometric / Term / Quadratic / Iterate

Definition / Description:	Arithmetic - a sequence where terms are found by adding or subtracting an equal amount.	Nth term - The general rule of a number sequence.	Geometric - A sequence in which you find each term by multiplying the previous term by a fixed value.	Term - a part of an equation, expression or sequence.	Quadratic - A sequence where the difference increases or decrease by an equal amount each time	Iterate - a quantity arrived at by iteration.

Knowledge points:	Nth term of a linear sequence	
Knowledge point examples:	$\mathrm{n}: 1$	2

The nth term of a linear sequence is always of the form $\mathrm{An} \pm \mathrm{b}$, where:
A, is the difference between each term and the next term. b is the difference between the first term and A.

$13-\frac{2 n}{2 n}$
In a descending sequence we find the zero term to discover what we are taking An way from.

Finding terms in a	Nth term of a Quadratic sequence
sequence	

From the
 Find the nth term in the

sequence
$5,12,19,26,33 \ldots$ work out the $50^{\text {th }}$ term.

The nth term of this sequence is $7 n-2$

Find the 50th term by substituting $\mathrm{n}=50$ into the rule, $7 n-2$
$=7 \times 50-2=$ $350-2=348$.
sequence:
$5,9,15,23 \ldots$

The second differences are constant (2) so the sequence is quadratic and the coefficient of n^{2} is 1 . So the nth term includes $1 n^{2}$. To find the remainder of the nth term, we subtract $1 n^{2}$ from our sequence and find the nth erm of the linear sequence left over:
$\begin{array}{llll}5 & 9 & 15 & 23\end{array}$

1	4	9	16
	5	6	7

$\begin{array}{llll}4 & 5 & 6 & 7 \ldots \text { The nth term of }\end{array}$ this sequence is $n+3$.
Nth term of quadratic sequence $=n^{2}+n+3$

Geometric Progression
Sequences by iteration

Find the first four iterations of the iterative formula
$x_{n+1}=3 x_{n}-2$ with
$x_{1}=2$.
$x_{2}=3 x_{1}-2$
$=3 \times 2-2=4$
$x_{3}=3 x_{2}-2$
$=3 \times 4-2=10$
$x_{4}=3 x_{3}-2$
$=3 \times 10-2=28$
$x_{5}=3 x_{4}-2$
$=3 \times 28-2=82$

[^0]
[^0]: Linked \quad Notation and manipulation / Functions / Multiples, Primes, Factors / Index Numbers Knowledge

