INDEX NUMBERS

Keywords: Index / Indices / Power / Exponent / Base / Root / Reciprocal

Definitions/	Index number / Indices (pI) - Description: the small digit to the top right of a number that tells you the number of times that number is multiplied by itself.

Base: the number you apply the power to.

Reciprocal: the inverse of any number except 0 .

Root: root of a number is a number that when multiplied by itself produces the origina number

Knowledge points:	Understand Index notation - squares, cubes and roots	Multiplication Index Law - when multiplying with the same base, ADD the powers	Division Index Law - When dividing with the same base, SUBTRACT the powers	Brackets Index Law - when raising a power to another power, MULTIPLY the powers together	Negative powers - a negative power performs the reciprocal	Fractional Powers - the denominator of a fractional power acts as a 'root' - The numerator of a fractional power acts as the normal power	Power of 0 - Anything to the power of 0 is 1	Changing the Base -
Knowledge point examples:	$\begin{aligned} 3 \times 3 & =3^{2} \\ & =\underline{9} \\ \sqrt{9}= & \pm \underline{3} \\ 4 \times 4 & \times 4 \\ & =4^{3} \\ & =\underline{64} \end{aligned}$	$\begin{aligned} a^{4} \times a^{5} & =a^{4+5} \\ & =\underline{a^{9}} \end{aligned} ~\left(\begin{array}{rl} 5^{6} \times 5^{7} & =\underline{5^{11}} \\ 3 a^{4} \times 5 a^{6} \\ = & =15 a^{10} \end{array}\right.$	$\begin{aligned} a^{6} \div a^{4} & =a^{6-4} \\ & =\underline{\underline{a^{2}}} \\ 5^{10} \div 5^{7} & =\underline{\underline{5^{3}}} \\ 8 a^{4} \div 4 a^{3} & =\underline{\underline{2 a}} \end{aligned}$	$\begin{gathered} \left(a^{3}\right)^{4}=a^{3 \times 4} \\ =\underline{\underline{a^{12}}} \\ \left(5^{4}\right)^{6}=\underline{\underline{5^{24}}} \\ \left(5 a^{3}\right)^{2}=\underline{\underline{25 a^{6}}} \end{gathered}$	$\begin{gathered} a^{-1}=1 / a \\ 5^{-2}=(1 / 5)^{2} \\ =1 / 25 \\ (1 / 4)^{-3}=4^{3}= \\ \underline{\underline{64}} \end{gathered}$	$\begin{aligned} a^{\frac{b}{\bar{c}}} & =(\sqrt[c]{a})^{b} \\ 27^{\frac{2}{3}} & =(\sqrt[3]{27})^{2} \\ & =3^{2} \\ & =\underline{\underline{9}} \end{aligned}$	$\begin{gathered} a^{0}=\underline{1} \\ 6^{0}=\underline{1} \\ 4 a^{0}=4 x \\ 1 \\ =\underline{4} \end{gathered}$	Write as a power of 2 $\begin{gathered} 16^{5}=\left(2^{4}\right)^{5} \\ =2^{20} \end{gathered}$

Linked Knowledge Maps:

Standard Form / Surds / Non-Linear Graphs / Non-Linear Graphs - Quadratic and Cubic

