Fractions: Introduction

Keywords:

Numerator, Denominator, Whole, Improper, Equivalent, Reciprocal

Definition /	Numerator: The numerator is the top number in a fraction	Denominator: The bottom number in a fraction, it shows what we are dividing by	Whole: An integer, a number without decimals	Improper: An improper fraction has a numerator that is larger than the denominator	Equivalent: Equivalent fractions have different
numerators and denominators but have the same value					

Knowledge points:	What is a Fraction
Knowledge point examples:	A Fraction is a part of a whole. Shade $\frac{4}{5}$ of the shape:

Equivalent Fractions: To generate an equivalent fraction, both numerator and denominator must be multiplied by the same amount

$$
\frac{1}{2} \times 2 \times 2=\frac{2}{4}
$$

Simplifying Fractions	Converting Fractions - Improper to Mixed number

To simplify a fraction, To convert an improper both numerator and fraction to a mixed number denominator are fraction, we divided the divided by the same amount:
 numerator by the denominator, we get a whole number, and a remainder, the remainder in the new numerator.

$$
\frac{5}{2}=2 \frac{1}{2}
$$

$5 \div 2=2$ wholes, remainder 1
Converting Fractions - Mixed
number to improper fraction

To convert a mixed number fraction, we multiply the whole number part by the denominator, and add the result to the current numerator.

$$
2 \frac{1}{3}=\frac{7}{3}
$$

$2 \times 3=6$
$1+6=7$

Reciprocal: The reciprocal is the inverse of any number except 0 . This means a fractions numerator and denominator change places
Four operations (Addition, Subtraction, Multiplication and Division)

Addition and Subtraction: To add or subtract fractions, both fractions must have the same denominators. We then add or subtract the numerators only.

$$
\begin{aligned}
& \frac{4}{7}+\frac{2}{7}=\frac{4+2}{7}=\frac{6}{7} \\
& \frac{5}{7}-\frac{3}{7}=\frac{5-3}{7}=\frac{2}{7}
\end{aligned}
$$

Multiplication: To multiply fractions, we multiply numerator by numerator, and denominator by denominator.

$$
\frac{3}{5} \times \frac{2}{7}=\frac{3 \times 2}{5 \times 7}=\frac{6}{35}
$$

Division: We convert a division
to a multiplication by the reciprocal.
$\frac{4}{7} \div \frac{2}{7}=\frac{4}{7} \times \frac{7}{2}=\frac{28}{14}=2$

Fractions: Manipulation

Keywords:

Definition /

 Description:Knowledge points:

Knowledge

 point examples:Numerator, Denominator, Whole, Improper, Equivalent, Reciprocal
Refer to Fractions: Introduction Knowledge map

Fraction of an amount

To find a fraction of an amount, we divide the amount by the denominator of the fraction, and multiply the result of this division by the fractions numerator.

$$
\text { Find } \frac{3}{5} \text { of } £ 45
$$

$$
£ 45 \div 5=£ 9 \text { which is } \frac{1}{5}
$$

$£ 9\left(\frac{1}{5}\right) \times 3=\underline{£ 27}$ which is $\frac{3}{5}$

Increase / Decrease by a Fraction

To Increase / Decrease by a fraction, we follow the steps of Fraction of an amount, and we add the result to the starting amount to Increase, or subtract the result from the starting amount to Decrease.

$$
\text { Increase } £ 45 \text { by } \frac{3}{5}
$$

$$
£ 45 \div 5=£ 9 \text { which is } \frac{1}{5}
$$

$£ 9\left(\frac{1}{5}\right) \times 3=£ 27$ which is $\frac{3}{5}$

$$
£ 45+£ 27=£ 72
$$

Decrease £45 by $\frac{3}{5}$

$$
£ 45 \div 5=£ 9 \text { which is } \frac{1}{5}
$$

$£ 9\left(\frac{1}{5}\right) \times 3=£ 27$ which is $\frac{3}{5}$

$$
£ 45-£ 27=£ 18
$$

Find the original amount

To find the original amount, we need to identify how many equal parts we now have. We divide the amount by how many parts we have, and multiply by how many we should have had.

A price was increase by $\frac{3}{4}$ to $£ 70$. How much was the original price?

$$
\frac{4}{4}+\frac{3}{4}=\frac{7}{4}
$$

As we are dealing with $\frac{1}{4} s$,
the original must be $\frac{4}{4}$, and after the increase we have $\frac{7}{4}$
So we divide the amount (£70) by 7 to find $\frac{1}{4}$, and multiply by 4 to find $\frac{4}{4}$ (The original amount)

$$
\begin{aligned}
& £ 70 \div 7=£ 10 \\
& £ 10 \times 4=£ 40
\end{aligned}
$$

Linked Knowledge Maps

Fractions: Introduction, Multiples Primes and Factors, FDP Conversion

