SURDS

Keywords:	Rational / Irrational / Root / Surd / Expand / Rationalise					
Definition / Description:	Rational – A number that can be expressed as either an integer, a terminating decimal or a fraction	Irrational - A number that cannot be expressed as either an integer, a terminating decimal or a fraction	Root – A root is a quantity that when multiplied by itself a certain number of times equals a given quantity	Surd – An expression that includes a square root	Expand – To multiply out a set of brackets.	Rationalise – To eliminate an irrational number from the denominator of a fraction.
Knowledge points:	Simplify Surds – Simplify by factoring out a square number	Multiply and Divide Surds $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ $\sqrt{a \div b} = \sqrt{a} \div \sqrt{b}$	Add and Subtract Surds - When adding and subtracting surds the root must be the same number.	Expand Brackets with Surds – Multiply each term inside the bracket by the term outside the bracket.	Rationalise the Denominator 1 – Create an equivalent fraction where the denominator is rational	Rationalise the Denominator 2 - Use a difference of two squares to rationalise
Knowledge point examples:	$\sqrt{75} = \sqrt{25 \times 3}$ $= \sqrt{25} \times \sqrt{3}$ $= 5 \times \sqrt{3}$ $= 5\sqrt{3}$ $\sqrt{18} = \sqrt{9 \times 2}$ $= \sqrt{9} \times \sqrt{2}$ $= 3 \times \sqrt{2}$ $= 3\sqrt{2}$	$\sqrt{6} \times \sqrt{7} =$ $\sqrt{6} \times 7 =$ $\sqrt{42}$ $\sqrt{50} \div \sqrt{10} =$ $\sqrt{50} \div 10 =$ $\sqrt{5}$ $4\sqrt{6} \times 2\sqrt{5}$ $= 4 \times 2 \times \sqrt{6} \times \sqrt{5}$ $= 8\sqrt{30}$		$\sqrt{3}(\sqrt{7} + 5) = \sqrt{21} + 5\sqrt{3}$ $(\sqrt{5} + 4)(\sqrt{5} - 2)$ $= 5 + 4\sqrt{5} - 2\sqrt{5} - 8$ $= 2\sqrt{5} - 3$	$\frac{2 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{2\sqrt{3}}{3}$ $\overline{\sqrt{3}} = \frac{3\sqrt{5}}{2\sqrt{5}} = \frac{3\sqrt{5}}{10}$	$\frac{2}{4 + \sqrt{2}} = \frac{2(4 - \sqrt{2})}{4 + \sqrt{2}(4 - \sqrt{2})} = \frac{8 - 2\sqrt{2}}{4^2 - (\sqrt{2})^2} = \frac{8 - 2\sqrt{2}}{4^2 - (\sqrt{2})^2} = \frac{8 - 2\sqrt{2}}{12}$
Linked Knowledge	Index numbers / Place value, decimals, rounding estimation and bounds / Fractions / Pythagoras and Trigonometry					

Maps