| Keywords: | Trial, Event, Outcome, Random, Experimental probability, Relative frequency, Theoretical probability, Estimate, Independent |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Definition / Description: | Trial: a test or experiment <br> Event: an occurrence or outcome <br> Outcome: possible results of an experiment <br> Random: Something that happens without bias <br> Biased: having a tendency towards something away from the normal <br> Mutually Exclusive: events that cannot happen at the same time <br> Estimate: give an approximation of the actual value <br> Independent: events that do not depend on each other |  |  |  |
| Knowledge points - | Experimental probability (Relative frequency): a probability that is determined on the basis of a series of experiments | Theoretical probability: what is expected to happen based on the possible outcomes, assuming equalling likely events | The OR rule: <br> In mutually exclusive events, to find the probability of one event OR another event happening we ADD the probabilities | The AND rule: <br> In Independent events, to find the probability of one event AND another happening, we MUTLIPLY the probabilities |
| Knowledge point examples: | Experimental Probability is found by repeating an experiment and observing the outcomes. <br> $P($ event $)=\frac{\text { number of times event occurs }}{\text { total number of trials }}$ <br> Example: <br> A coin is tossed 10 times: A head is recorded 7 times and a tail 3 times. $\begin{aligned} & P(\text { head })=\frac{7}{10} \\ & P(\text { tail })=\frac{3}{10} \end{aligned}$ | Theoretical Probability is what is expected to happen based on mathematics <br> $P($ event $)=$ $\qquad$ otal number of possible outcomes <br> Example: <br> A coin is tossed. $\begin{aligned} & P(\text { head })=\frac{1}{2} \\ & P(\text { tail })=\frac{1}{2} \end{aligned}$ | $P(A \text { OR } B)=P(A)+P(B)$ <br> When two dice are rolled, the probability of getting a 3 OR a 4 = $\begin{aligned} P(3 \text { and } 4) & =P(3)+P(4) \\ & =\frac{1}{6}+\frac{1}{6} \\ & =\frac{2}{6} \\ & =\frac{1}{3} \end{aligned}$ | $P(A \text { and } B)=P(A) \times P(B)$ <br> When two dice are rolled, the probability of getting a 3 AND a 4 = $\begin{aligned} P(3 \text { and } 4) & =P(3) \times P(4) \\ & =\frac{1}{6} \times \frac{1}{6} \\ & =\frac{1}{36} \end{aligned}$ |
| Linked Knowledge Maps: | Further Probability <br> Fractions <br> Ratio |  |  |  |

