Sequences

Keywords: Arithmetic / nth term / Geometric / Term / Quadratic / Iterate

Definition / Description:	Arithmetic - a sequence where terms are found by adding or subtracting an equal amount.	Nth term - The general rule of a number sequence.	Geometric - A sequence in which you find each term by multiplying the previous term by a fixed value.	Term - a part of an equation, expression or sequence.	Quadratic - A sequence where the difference increases or decrease by an equal amount	Iterate - a quantity arrived at by iteration.

Knowledge points:	Nth term of a linear sequence	Finding terms in a sequence	Nth term of a Quadratic sequence	Geometric Progression	Sequences by iteration
Knowledge point examples:	 The nth term of a linear sequence is always of the form $\mathrm{An} \pm \mathrm{b}$, where: A, is the difference between each term and the next term. b is the difference between the first term and A. $\begin{array}{lllll} \mathrm{n}: \underbrace{13}_{\underline{13-\frac{2 n}{2 n}}} \underbrace{11}_{-2} & \underbrace{2}_{-2} & \underbrace{3}_{-2} & 4 \\ \underbrace{9} \end{array}$ In a descending sequence we find the zero term to discover what we are taking $A n$ way from.	From the sequence $5,12,19,26,33 \ldots$ work out the $50^{\text {th }}$ term. The nth term of this sequence is $7 n-2$ Find the 50th term by substituting $\mathrm{n}=50$ into the rule, $7 n-2$ $\begin{aligned} & =7 \times 50-2= \\ & 350-2=348 \end{aligned}$	Find the nth term in the sequence: $5,9,15,23 \ldots$ The second differences are constant (2) so the sequence is quadratic and the coefficient of n^{2} is 1 . So the nth term includes $1 n^{2}$. To find the remainder of the nth term, we subtract $1 n^{2}$ from our sequence and find the nth erm of the linear sequence left over: $\begin{array}{llll}5 & 9 & 15 & 23\end{array}$ $14 \quad 9 \quad 16$ 4 5 6 $7 \ldots$ The nth term of this sequence is $\mathrm{n}+3$. Nth term of quadratic sequence $=n^{2}+n+3$	Geometric progression is a sequence of nonzero numbers where each term after the first is found by multiplying the previous one by a number. Find the next two terms of the sequence $3 \underbrace{6}_{x^{2}} \underbrace{12}_{x^{2}} \underbrace{24}_{x^{2}} \ldots$ The term to term rule here is $x 2$ therefore the next two terms are $\begin{aligned} & 24 \times 2=\underline{48} \\ & 48 \times 2=\underline{96} \end{aligned}$	Find the first four iterations of the iterative formula $\begin{aligned} & x_{n+1}=3 x_{n}-2 \text { with } \\ & x_{1}=2 . \\ & x_{2}=3 x_{1}-2 \\ & =3 \times 2-2=4 \\ & x_{3}=3 x_{2}-2 \\ & =3 \times 4-2=10 \\ & x_{4}=3 x_{3}-2 \\ & =3 \times 10-2=28 \\ & x_{5}=3 x_{4}-2 \\ & =3 \times 28-2=82 \end{aligned}$

Linked Notation and manipulation / Functions / Multiples, Primes, Factors / Index Numbers Knowledqe

