Toynbee Curriculum Knowledge Maps

MATHS (Shape)

			2D	Shapes						
Keywords:	Triangle / Quadrilateral / Polygon / Regular / Parallel									
Definition / Description:	Triangle: A three sided polygon	Quadrilatera sided polygor	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				al	Parallel: Two sides that never meet		
Knowledge points:	Properties of triangles		Propertie	s of Quadrilaterals			Regula	ır Polygons		
Knowledge point examples:	All triangles have 3 sides and interior angles of 180 ⁰ however types of triangles have specifi Equilateral Triangle: equal sides; (60 ⁰); 3Lines of symmetry; Rotati order 3 Isosceles triangle: 2 equal sides, line of symmetry; Rotational sym Scalene triangle: No sies or ang 0 lines of symmetry; Rotational sym Right angled triangle: 1 angle of symmetry (unless also isosceles) symmetry order 1.	er, different c properties equal angles; onal symmetry 2 equal angles, 1 metry order 1 les are the same ymmetry order 1 90°. 0 lines of	sum of inte different typ properties Square: Equa angles 90°; D 90° Rectangle: 2 sides; All ang perpendicular Trapezium: 1 bisect and are Kite: 2 pairs of do NOT bisec Rhombus: Eq opposite angl perpendicular Parallelogram opposite angl	pair of parallel sides; diagonals do e NOT perpendicular of equal sides; no parallel sides; dia ct but are perpendicular jual sides; opposite sides are paral es are equal; diagonals bisect and	ecific I ss at allel OT not agonals Iel; are s;		5 sides Regular Pentagon 7 sides Regular Heptagon	6 sides Regular Hexagon 8 sides Regular Octagon 8 Regular Nonagon	4 sides Square 10 sides Regular Decagon	
Linked Knowledge Maps	3D shapes / Transformat Angles	ions / Congrue	nce and Sin	nilarity / Pythagoras and T	rigonometi	ry /				

Angles of polygons

Linked 3D shapes / Transformations / Congruence and Similarity / Pythagoras and Trigonometry / Knowledge Angles

Maps

			ANGLES				
Keywords:	Angle, Acute, Obtu	use, Reflex, Right-A	Angle, Parallel				
Definition / Description:	Angle : A measure of turn	Acute: An angle that lies between 0° and 90°	Obtuse: an angle that lies between 90° and 180°	Reflex: an angle that lies between 180° and 360°	Right-Angle: a quarter of a revolution, or exactly 90°	Parallel: lines that never meet	
Knowledge points:	Types of angles: R different classification	-	Angle Facts: Recogr of certain shapes and		Angles in Parallel Lines : Recognise the different classifications of equal angles within parallel lines		
Knowledge point examples:	Acute: an angle that measures between and 90° Right-Angle: an ang measures exactly 90° Obtuse: an angle that measures between 90° and 180° Reflex: an angle that between 180° and 360°	0° gle that	Angles in a triangle to Angles in a quadrilate Angles around a point Angles on a straight li $\mathbf{a}^{\circ} + \mathbf{b}^{\circ} = 180^{\circ}$	eral total 360° t total 360°	Alternate angles: whe two parallel lines to or shape, the inside ang Corresponding angles transects two parallel "F" shape, the angles lines are equal Vertically Opposite: w intersect, angles oppo equal	reate a "Z" or "S" les are equal s: when a line lines to create an on the parallel	
Linked	Constructions / Con	ngruence and Similar	rity				

Knowledae

Circles

Keywords:	Diameter, Radius, Circumference, Chord, Arc, Sector, Segment, Tangent, Pi (π)								
Definition / Description:	Diameter: the chord that passes through the centre of a circle Radius: a line that joins the centre of a circle to the circumference Circumference: The perimeter of a circle Chord: a line that joins two points on the circumference Arc: part of the circumference Sector: the section of a circle between two radii and an arc Segment: the section of a circle between a chord and an arc Tangent: a straight line that touches a circle without crossing it Pi (π): the ratio of a circumference to the diameter of a circle								
Knowledge points:	Parts of a circle	Circumference C = πd	Area: A = πr²	Area of sector: $A = \frac{\theta}{360} \times \pi r^2$ Where Θ is the angle	Length of arc: $L = \frac{\theta}{360} \times \pi d$ Where Θ is the angle	Perimeter of a sector			
Knowledge point examples:	Circle Diameter Radius Circumference Object Object Object Object Semi-Circle Chord Arc Centre Object Object Object Object Sector Major-Segment Minor-Segment Tangent	$C = \pi d$ $= \pi \times 6$ $= 18.8 \text{cm}$ (1dp)	A = πr^2 = $\pi x 3^2$ = 28.3cm ² (1dp)	$A = \frac{270^{\circ}}{360} \times \pi r^{2}$ $= \frac{270}{360} \times \pi \times 5^{2}$ $= 58.9 \text{ cm}^{2}$ (1dp)	$L = \frac{270^{\circ}}{360} \times \pi d$ $= \frac{270}{360} \times \pi \times 10$ $= 23.6 \text{ cm}(1 \text{ dp})$	When calculating the perimeter of a sector we first calculate the arc length and then add on 2 radii radii is the plural word for radius). Usually measured in cm, m, mm. radii Arc length			
Linked Knowledge Maps	Angles Circle Theorems Non-linear graphs – circle, reciproca	I, exponential							

3D shapes

COMPOUND MEASURES

Keywords: Compound / Density / Pressure / Newton

Definition / Description:	Compound: A Mixture	Density: an objects mas per unit volume	Pressure: Force per unit area	Newton: Unit for weight and force
Knowledge points:	Speed Distance, Time: Speed = Distance ÷ Time	Average Speed: Total Distance ÷ Total Time	Density: Density = Mass ÷ Volume	Pressure: Pressure = Force ÷ Area
Knowledge point examples:	If I travel 72 miles in 3 hours what is my speed? Speed = Distance \div Time 72 miles \div 3 hours = 24mph Mark cycles 42 km at an average speed of 14 km/h. How long does it take him? Time = distance \div Speed 42km \div 14km/h = 3 hours A bird flies for 40 minutes at an average speed of 11m/s. How far does the bird fly in kilometres? 40 minutes = 2400 seconds Distance = Speed x Time 11m/s x 2400s = 26400m = 26.4km	A car travels 60km at 30 km/h and then a further 180km at 160 km/h. Find: a) the total time taken in hours: Time = distance ÷ Speed = = 60 ÷ 30 = 2 hours = 180 ÷ 160 = 1.125 hours = 3.125hrs b) the average speed for the whole journey Speed = Distance ÷ Time = (60 + 180) ÷ 3.125 = 76.8 km/h	A piece of silver has a mass of 42g and a volume of 4cm ³ . Work out the density of silver Density = Mass \div Volume =42g \div 4cm ³ = 10.5 g/cm³ A 50g piece of wood which has a density of 0.4g/cm ³ Work out the volume of the block. Volume = Mass \div Density 50g \div 0.4g/cm ³ = 125cm³	A force of 30 Newtons is applied to an area of 1.5 m^2 . Work out the pressure in N/m ² Pressure = Force ÷ Area $30N \div 1.5m^2 = 20N/m^2$ A force is applied to an area of 4.5 m^2 . It produces pressure of 12 N/m ² . Work out the force in Newtons. Force = Pressure x Area $12N/m^2 x 4.5m^2 = 54N$
Linked Knowledge Maps	Non-compound measures / Bou	unds		

CONGRUENCE AND SIMILARITY										
Keywords:	Scale factor / Ratio / E	Scale factor / Ratio / Enlargement / Similar / Congruent / Identical /								
Definition / Description:		part comparison Changing the size sh of a shape by a sid given scale factor pr			sha side proj	nilar: Two pes whose es are in portion to one other	Congruent: to mathema describe 2 s that are ide	atically alike shapes entical		
Knowledge points:	Use the basic congrue for triangles (SSS, SAS RHS) Understand and identify triangles; prove congrue formal arguments	S, ASA, s congruent f ncy using v	teriaUse congruence and similarity to prove missing angles and sidesentRecognise similar shapes			notation Make links to similarity and scale factors		Apply the concepts of congruence and similarity, including relationships between lengths, areas and volumes		
Knowledge point examples:	Condition for Congruency = Side, Side, Side (SSS) Condition for Congruency = Angle, Side, Angle (ASA) Condition for Congruency = Side, Angle, Side (SAS) $\int_{12 \text{ cm}}^{12 \text{ cm}}$ $\int_{12 \text{ cm}}^{12 \text{ cm}}$ $\int_{12 \text{ cm}}^{12 \text{ cm}}$ $\int_{11 \text{ cm}}^{12 \text{ cm}}$ Condition for Congruency = Side, Angle, Side (SAS) $\int_{13 \text{ cm}}^{15 \text{ cm}}$ $\int_{12 \text{ cm}}^{10 \text{ cm}}$ Condition Congruency = Side (SAS) $\int_{12 \text{ cm}}^{15 \text{ cm}}$ Condition Congruency = Side (SAS) $\int_{12 \text{ cm}}^{15 \text{ cm}}$ Condition Congruency = Side (RHS)	r = 10 cm	Work Triang are b > Ang equa corre equa Angle 180° Angle total B in T Angle	is a straight line. a out x. a gle AB and Triangle B oth isosceles triangle gles at A and B are I and angles at C and sponding base are I. a t B in Triangle BC: - $(40^{\circ} + 40^{\circ}) = 100^{\circ}$ es on a straight line 180°, therefore angle Triangle AB = 80°. es at A and B are equi is 180° - $(80^{\circ} + 80^{\circ}) = 100^{\circ}$	es - d e at ual,	A 2 cm Write the ratio pperimeter B in itsform.Perimeter A: $2(7 + 2) = 18 \text{ cr}$ Perimeter B: $4 + 4 + 4 \text{ cm} + 4$ $= 16 \text{ cm}$ Ratio = $18 : 16$ $9:8$ Write the ratio arB in its simplestArea A: $7 \times 2 = 1$ Area B: $4 \times 4 = 1$ Ratio = $14: 16$ $7:8$	s simplest n ÷ 2 rea A : area form. 4 cm ² 6 cm ²	² What is volume volume <i>Ratios</i> 2 cm : simples If lengt area ra volume	boxes are similar. the ratio of the a the ratio of the a of box A to the a of box B? of side lengths = 6 cm = 1 : 3 (in st form) th ratio is a : b, then a tio is a ² : b ² and a ratio is a ³ : b ³ . ore, ratio of as = = $1 : 27$	

Constructions / Angles / Transformations (Enlargement)

Linked

MEASURES

PYTHAGORAS AND TRIGONOMETRY								
Keywords:	Hypotenuse / Oppo	osite / Adjacent / C	omplementary ang	le /Square Root/	Inverse			
Definition / Description:	Hypotenuse : The longest side of a right angled triangle	Opposite: The side opposite the given angle	Adjacent: The side in between the given angle and the right angle	Complementary : Angles to add up to 90°	 Square Root: A number which produces a specified quantity when multiplied by itself. 	Inverse: The reverse or opposite		
Knowledge points:	Calculate missing s Use Pythagoras to Work fluently with t Use the tangent, si Use sine, cosine ar Select the appropri	solve problems in he hypotenuse, op ne and cosine ration nd tangent to find r	3D posite and adjace o to find missing si missing angles	de lengths				
Knowledge point examples:	Finding the hypotenuse: $a^{2} + b^{2} = c^{2}$ $5^{2} + 12^{2} = x^{2}$ $25 + 144 = x^{2}$ $169 = x^{2}$ $\sqrt{169} = x$ x = 13cm x cm 5cm 12cm	-x cm 10	$b^{2} - b^{2} = a^{2}$ $b^{2} - 8^{2} = x^{2}$ $b^{2} - 64 = x^{2}$ $36 = x^{2}$ $\sqrt{36} = x$ x = 6 cm $AG = x^{2}$		SOHCAHTOA: Side Label your triangle and select the correspondence $\tan \theta = \frac{xpptio}{adj}$ $\tan 40 = \frac{x}{5}$ $5 \times \tan 40 = x$ 4.19 cm = x 5 cm^{40}	SOHCAHTOA : Angle Label, select ratio and Do not forget to use sin ⁻¹ when finding the angle Let angle ABC = θ $\sin \theta = \frac{6}{10}$ $\theta = \sin^{-1}\frac{6}{10}$ $\theta = 36.87^{\circ}$ (2 dp) $\theta = 6 \text{ cm}$ $\theta = 8 \text{ cm}$		
Linked Knowledge Maps:	Further Trigonomet	rry / 3D Shape / 2D) Shape / Bearings	3				

		TRANS	SFORMATIONS								
Keywords:	Translation / Vector / F	Translation / Vector / Rotation / Reflection / Symmetry / Enlargement									
Definition / Description:	Translation: When a shape is moved into a different position without being turned or flipped	Vector: The description of a movement for a translation	Rotation: The circular motion of an object are a centre	Reflection: When a shape is reflected in a mirror line it is flipped	Symmetry : A mirror image	Enlargement: When a shape changes size					
Knowledge points:	Translation: • Column Vector	 Rotation: Centre of Rotation (x,y) Direction (clockwise/anti- clockwise) Angle of Rotation 	Reflection:Mirror Line (equation of straight line)	 Enlargement: Centre of Enlargement (x,y) Scale Factor A fractional scale factor generates a SMALLER image. 	negative the	cale factor is e enlarged ars on the other eentre of					
Knowledge point	Translate shape A by the vector [$\begin{bmatrix} y \\ 12 \\ 14 \\ 14 \\ 12 \\ 14 \\ 12 \\ 14 \\ 14$	$\frac{y}{12}$ Reflection in the line $y = 5$.	¹² ¹⁴ ¹⁶ ¹⁷ ¹⁶ ¹⁷ ¹⁷ ¹⁷ ¹⁷ ¹⁷ ¹⁷ ¹⁷ ¹⁷	12 11 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5	Enlargement by scale factor -2 centred on (7, 4).					
Linked Knowledge Maps	2D shapes, Congruend	ce and Similarity, Linear Gr	aphs, Vectors, Scale								

TRANSFORMATIONS

Keywords:	Translation / Vector / Rotation / Reflection / Symmetry / Enlargement							
Definition / Description:	Translation: When a shape is moved into a different position without being turned or flipped	Vector: The description of a movement for a translation	Rotation: The circular motion of an object are a centre	Reflection: When a shape is reflected in a mirror line it is flipped	Symmetry: A mirror image	Enlargement: When a shape changes size		
Knowledge points:	Enlargement The distance from the centre to each		Enlargement by a fract	ional scale factor	Enlargement by a Nega	tive scale factor		
Knowledge point examples: see WR / AQA exemplar questions	point is multiplied b to give the point on t Enlarge shape A by scale factor	y the scale factor he enlarged shape.	When the scale factor is the enlarged shape get Enlarge shape A by scale factor 12 11 10 9 8 7 6 5 4 4 3 2 1	ts smaller	9	s on the other side nent		
Linked Knowledge Maps	2D shapes / Congrue Linear Graphs	ence and Similarity /	Enlarge the shape by sca about the centre (2	ale factor $\frac{1}{3}$		8 9 10 11 12		

	т	rigonometry in non	right angles tr	riangle	S	
Keywords:	Opposite / Adjacent / pe	erpendicular / inverse / subjec	t			
Definition / Description:	Opposite: The side opposite the given angle	Adjacent: The side in between the given angle and the right angle	Perpendicular: Two sides that are at a right angle to one another		: To apply an e function	Subject: The unknown variable of a formula
Knowledge points:	Label triangle to use with trigonometric formulae	Know and apply the sine rule to find unknown angles and sides $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	Know and apply the cosine rule to find unknown angles an $a^2 = b^2 + c^2 - 2bcco$	d sides		ides and angles of a triangle when given
Knowledge point examples: B	a C	Use the sine rule to work out the unknown length y. y = a b = cm 35°	Use the cosine rule work out the unknow c b 5 cm 35° c 11 cm c	B	Find the are	a of the triangle
c	b	A $\frac{a}{\sin A} = \frac{a}{\sin B}$ $\frac{a}{\sin 35} = \frac{5}{\sin 20}$ $a = \frac{5}{\sin 20} \times \sin 35$ $\frac{a}{a} = 8.39 \text{ cm}$ Use the sine rule to work out the unknown angle y.	A $a^{2} = b^{2} + c^{2} - 2bc$ $y^{2} = 5^{2} + 11^{2} - 2$ $\times 11\cos 35$ $y^{2} = 55.893$ $y = \sqrt{55.893}$ y = 7.48 cm Use the cosine rule work out angle x	× 5		$\times 8 \times sin 38$
A		a 5 cm 4 cm y A	A $\frac{b}{12 \text{ cm}}$ $\frac{c}{c}$	Z cm B	1.7 m	2.8 m
		$\frac{\sin A}{a} = \frac{\sin B}{b}$ $\frac{\sin A}{5} = \frac{\sin 32}{4}$ $\sin A = \frac{\sin 32}{4} \times 5$ $\sin A = 0.662$ $\sin^{-1}(0.662) = 41.5$ $y = 41.5^{\circ}$	$7^{2} = 9^{2} + 12^{2} - 2$ $12 \times \cos x$ $49 = 225 - 216 \cos x$ $216 \cos x + 49 = 2$ $216 \cos x = 176$ $\cos x = \frac{176}{216}$ $\cos^{-1}\left(\frac{176}{216}\right) = 35.$ $x = 35^{\circ}$	s <i>x</i> 25	Area = $\frac{1}{2}absi$ 1.5 = $\frac{1}{2} \times 1.7$ 1.5 = 2.38sin $\frac{1.5}{2.38} = sin\theta$ $\theta = sin^{-1}(\frac{1.5}{2.38})$ $\theta = 39.1^{\circ}$	× 2.8sinθ θ
Linked Knowledge Maps	Pythagoras and Trig	onometry in 2d and 3d				

VECTORS

Keywords:	Vector / Magnitud	e / Parallel / S	Scal	lar				
Definition / Description:				gnitude: The size of a for (length) Parallel: Two line meet			o lines that never	Scalar: A quantity that has only magnitude
Knowledge points:	Representing vectors: A vector can be represented using a line segment with an arrow. The MAGNITUDE of the vector is given by the length of the line. The direction of the vector is given by the arrow	Column Vectors: Are written in the form $\begin{pmatrix} x \\ y \end{pmatrix}$ where x tells you how far to move le or right and y how far to move up or down	v eft	Parallel vectors: Vectors that are multiples of one another. If one vector is parallel to another but a different size, they are SCALAR MULTIPLES	equival applyin	cting s: vectors is	Multiplying vectors: A vector can be multiplied by a scalar to create a parallel vector	Vector geometry: $b \rightarrow b \rightarrow a$
Knowledge point examples:		$\begin{pmatrix} -9\\ 15 \end{pmatrix}$ Move 9 place to the LEFT and 15 place UP		a = $\binom{2}{4}$ b = $\binom{-2}{-4}$ Vectors a and b are parallel and scalar multiples (multiple of -1) c = $\binom{4}{8}$ b = $\binom{3}{6}$ Vectors c and d are parallel and scalar multiples (multiple of -1)	Fi) $\mathbf{b} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ and $\mathbf{a} + \mathbf{b}$ $\mathbf{b} = \begin{pmatrix} 5+2 \\ 3+-2 \end{pmatrix}$ $= \begin{pmatrix} 7 \\ 1 \end{pmatrix}$ $\mathbf{a} + \mathbf{b}$	$\mathbf{p} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ $2\mathbf{p} = \begin{pmatrix} 2 \times 2 \\ 2 \times -3 \end{pmatrix} = \begin{pmatrix} 4 \\ -6 \end{pmatrix}$ $-\mathbf{p} = \begin{pmatrix} -1 \times 2 \\ -1 \times -3 \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$	a) $\overrightarrow{AO} = -\mathbf{a}$ b) $\overrightarrow{AB} = -\mathbf{a} + \mathbf{b}$ c) $\overrightarrow{BA} = -\mathbf{b} + \mathbf{a}$
Linked Knowledge Maps	Linear Graphs Transformations Angles Ratio 2D shapes							