Toynhee Curriculum Knowledge Maps

MATHS

 [Ratio] Toynhee School

DIRECT AND INVERSE PROPORTION

Keywords:	Constant / Variable / Inverse / Proportionality				
Definition / Description :	Constant: An unvarying number or quantity	Variable: A quantity that can take a range of values	Inverse: The reverse or opposite		Proportionality: Quantities varying in a ratio
Knowledge points:	Direct proportion: When one variable decreases the other increases	Inverse Proportion: When one variable increases the other decreases	Algebraic Direct proportion: $y=\frac{k}{x}$	Algebraic Inverse Proportion: $y=k x$	Graphical representations
Knowledge point examples:	Keith buys 6 pencils for 90p How much would 11 pencils cost? 6 pencils: 90p 1 pencil: 15 p $\downarrow \div 6$ 11penciels: 165p	If 6 men take 24 days to build a house, how long will it take 4 men to build the house? 6 men: 24 days 1 man $: 144$ days $\times 6$ 4 men $: 36$ days $\mid \div 4$	The amount of paint required to paint a wall is directly proportional to the area of the wall. 2 litres of paint are required for a wall of $15 \mathrm{~m}^{2}$ Work out a formula for p paint required for a wall with an area of $a \mathrm{~m}^{2}$ $A=\mathrm{k} \times p$ $\begin{gathered} \mathrm{K}=15 \div 2=7.5 \\ A=7.5 p \end{gathered}$ How much wall could I cover with 6 litres of paint? $\begin{gathered} A=7.5 \times 6 \\ A=45 m^{2} \end{gathered}$	H is inversely proportional to the cube of f. When $h=12.5, f$ $=2$ Find the value of h when $\begin{aligned} & f=5 . \\ & h=\mathrm{k} \div f^{3} \\ & \mathrm{~K}=h \times f^{3} \\ & \mathrm{~K}=12.5 \times 2^{3}= \\ & 100 \\ & h=100 \div f^{3} \end{aligned}$ When $f=5$ $h=100 \div 5^{3}=0.8$	

Linked	Notation and manipulation
Knowledge	Solving Linear Equations
Maps	Measures
	Ratio

RATIO

Keywords: Ratio, Sharing, Denominator / Unit form
Definition / Ratio: A ratio gives a part - to - Description: part comparison.
Sharing in a Ratio

A ratio tells us how many equal parts an amount has been split into, and how many equal parts are given to each person.
$£ 100$ is split into the ratio $2: 3$ and given to John and Hannah.

There are 5 equal parts in the ratio $(2+3)$, John will get 2 parts and Hannah will get 3 .
$£ 100 \div 5=£ 20$ (Each part is worth £20)

John gets 2 parts ($£ 20 \times 2$) $£ 40$
Hannah gets 3 parts ($£ 20 \times 3$) $£ 60$

Sharing: To share is to equally divide an amount into parts.

Denominator: The bottom number in a fraction, it shows what we are dividing by

Simplifying a Ratio

To simplify a ratio, all parts in the ratio must be divided by the same amount, so we look for the Highest Common Factor.

Simplify the Ratio 33 : 72
The HCF of 33 and 72 is 3 , so we can divide both by 3.
$33 \div 3=11$
$72 \div 3=24$
So the ratio becomes 11:24

Linked Knowledge Maps

SCALE

Keywords:	Scale, Ratio, Simplify		
Definition / Description:	Scale: A scale for a drawing or map is the ratio between the drawn distance to its true value	Ratio: A ratio gives a part - to - part comparison.	Simplify: Simplify means to make it simple. In mathematics, simplification is reducing the expression/fraction/problem in a simpler form. It makes the problem easy with calculations and solving.
Knowledge points:	Convert a measurement with a scale	Simplify a Ratio / Scale with units	
Knowledge point examples:	Scales are used to make it possible to work out real distances on a small diagram. A map uses the scale $1 \mathrm{~cm}: 2 \mathrm{~km}$ This tells us for every 1 cm we measure, the real life distance would be 2 km . If we measure 3.5 cm , we can multiply the real life measurement by what we have measured to find the correct distance.	Ratios and scales with units can be si be converted to the same units. Once all parts by the same amount. Simplify the Scale $4 \mathrm{~cm}: 2 \mathrm{~km}$ 1. Convert to the same unit $\quad 2 \mathrm{~km}=$ $4 \mathrm{~cm}: 200,000 \mathrm{~cm}$ $4: 200,000$ Simplify $1: 50,000$ $\div 4$	mplified. First all parts of the ratio or scale must all the parts have matching units, we can divide $200,000 \mathrm{~cm}$

The units are removed as this scale will now work with any units as it was simplified with matching units.

