Toynhee Curriculum Knowledge Maps

MATHS
 [Number]

Estimation and bounds

Keywords: Estimate / bound / Error interval

Definition / Estimate: To give an approximation of Description: an actual value

Bound: A limit eg $-3<x<3$ means that the value of x is between the limits of -3 and +3

Error Interval: Error intervals show the limits of accuracy when a number has been rounded or truncated using inequality signs

Knowledge points:

Knowledge

 point examples:
Estimation

All the numbers within the calculation are rounded to one significant figure BEFORE the calculation is performed

Estimate the answer to 356 x 44
$356: 1^{\text {st }}$ significant figure is in the hundreds place value
so $356 \approx 400$
44 : $1^{\text {st }}$ significant figure is in tens place value
so $44 \approx 40$
$356 \times 40 \approx 400 \times 40$
$=16,000$

Bounds

This is the range of values that a number could have been before rounding. There is an upper bound (the highest possibility) and a lower bound (the lowest possibility) The given value is halfway between the upper and lower bounds

1) A can of drink weighs 342 g to the nearest gram.
What are the minimum and maximum weights of the can?
(1 gram $\div 2=1 / 2$ gram)
Minimum $=341.5 \mathrm{~g}$
Maximum $=342.5 \mathrm{~g}$
2) 375 is rounded to the nearest 5 .

What are the upper and lower bounds? $5 \div 2=2.5)$
Minimum $=377.5$
Maximum $=372.5$

Bounds in calculations

Upper and lower limits of values must be calculated BEFORE applying in calculations

1) A can of drink weighs 342 g to the nearest gram.
What are the minimum and maximum weights of a pack of 12 cans?

Minimum can $=341.5 \mathrm{~g}$
Maximum can $=342.5 \mathrm{~g}$
Min pack $=341.5 \times 12=4098 \mathrm{~g}$
Max pack $=342.5 \times 12=4110 \mathrm{~g}$
2) x and y are both measured to

2 significant figures.
$x=230$ and $y=400$
Work out the greatest possible value of $\frac{x}{y}$.
Need greatest x and smallest y $235 \div 395=0.47$

Error interval

Write an inequality to show the error interval for $\mathrm{n}=8$ if it's given to the nearest whole number.

$7.5 \leq \mathrm{n}<8.5$

Frank rounds a number, y , to the nearest ten.
His result is 20 .
Write down the error interval for y .
$15 \leq y<25$

Linked Knowledge Maps

FRACTION DECIMALS PERGENTAGES CONVERSION

Keywords:
 Numerator, denominator, divide, decimal place, percent, fraction, terminating, recurring, proportion, equivalent

Definition / Description:

Fractions, decimals and percentages are 3 different ways of expressing a proportion of the whole.
Numerator: the top number in a fraction / Denominator: the bottom number in a fraction / Simplify: divide numerator and denominator by a common factor / Equivalent fractions: a fraction with the same value as another /Terminating decimal: one with a finite number of digits / Recurring decimal: one with an infinite number of digits

Knowledge points:	Convert between fraction, decimals and percentages	Compare value of fractions, decimals and percentages Convert all proportions to one form	Convert fractions into recurring decimals Do a simple division of numerator by denominator	Use algebraic methods to convert recurring decimals to fractions	Interpret fractions and percentages as operators Use of multipliers and divisors
Knowledge point examples:			Convert this fraction to a decimal using division. $\begin{gathered} \frac{5}{9}=5 \div 9 \\ 0.5 \quad 5 \quad 5 \quad 5 \quad \ldots \\ 9 \longdiv { 5 \cdot 0 ^ { 5 } 0 ^ { 5 } 0 ^ { 5 } 0 ^ { 5 } 0 } \\ \\ =0.5555 \ldots \\ \\ =0.5 \end{gathered}$ This is a recurring decimal.	Convert this decimal to a fraction. 0.45 Let $\mathrm{x}=0.45454545 \ldots$ Multiply by 100 so $100 x=45.454545 \ldots$ Subtract x from 100x $\begin{aligned} & 100 x=45.4545 \\ & x=0.4545 \\ & \hline 99 x=45 \\ & x=\frac{45}{99} \\ & \text { Simplify } \\ & \text { Sis } \end{aligned}$	Multiplying by $\frac{1}{5}$ is the same as dividing by 5 To find 62% of 80 , convert 62 \% to decimal of 0.62 then multiply $0.62 \times 80=49.6$

Linked

Fractions / Percentages

Knowledge

 MapsFractions: Introduction

Keywords:

Numerator, Denominator, Whole, Improper, Equivalent, Reciprocal

Definition /	Numerator: The numerator is the top number in a fraction	Denominator: The bottom number in a fraction, it shows what we are dividing by	Whole: An integer, a number without decimals	Improper: An improper fraction has a numerator that is larger than the denominator	Equivalent: Equivalent fractions have different
numerators and denominators but have the same value					

Knowledge points:	What is a Fraction
Knowledge point examples:	A Fraction is a part of a whole. Shade $\frac{4}{5}$ of the shape:

Equivalent Fractions: To generate an equivalent fraction, both numerator and denominator must be multiplied by the same amount

$$
\frac{1}{2} \times 2 \times 2=\frac{2}{4}
$$

Simplifying Fractions	Converting Fractions - Improper to Mixed number

To simplify a fraction, To convert an improper both numerator and fraction to a mixed number denominator are fraction, we divided the divided by the same amount:
 numerator by the denominator, we get a whole number, and a remainder, the remainder in the new numerator.

$$
\frac{5}{2}=2 \frac{1}{2}
$$

$5 \div 2=2$ wholes, remainder 1
Converting Fractions - Mixed
number to improper fraction

To convert a mixed number fraction, we multiply the whole number part by the denominator, and add the result to the current numerator.

$$
2 \frac{1}{3}=\frac{7}{3}
$$

$2 \times 3=6$
$1+6=7$

Reciprocal: The reciprocal is the inverse of any number except 0 . This means a fractions numerator and denominator change places
Four operations (Addition, Subtraction, Multiplication and Division)

Addition and Subtraction: To add or subtract fractions, both fractions must have the same denominators. We then add or subtract the numerators only.

$$
\begin{aligned}
& \frac{4}{7}+\frac{2}{7}=\frac{4+2}{7}=\frac{6}{7} \\
& \frac{5}{7}-\frac{3}{7}=\frac{5-3}{7}=\frac{2}{7}
\end{aligned}
$$

Multiplication: To multiply fractions, we multiply numerator by numerator, and denominator by denominator.

$$
\frac{3}{5} \times \frac{2}{7}=\frac{3 \times 2}{5 \times 7}=\frac{6}{35}
$$

Division: We convert a division
to a multiplication by the reciprocal.
$\frac{4}{7} \div \frac{2}{7}=\frac{4}{7} \times \frac{7}{2}=\frac{28}{14}=2$

Fractions: Manipulation

Keywords:

Definition /

 Description:Knowledge points:

Knowledge

 point examples:Numerator, Denominator, Whole, Improper, Equivalent, Reciprocal
Refer to Fractions: Introduction Knowledge map

Fraction of an amount

To find a fraction of an amount, we divide the amount by the denominator of the fraction, and multiply the result of this division by the fractions numerator.

$$
\text { Find } \frac{3}{5} \text { of } £ 45
$$

$$
£ 45 \div 5=£ 9 \text { which is } \frac{1}{5}
$$

$£ 9\left(\frac{1}{5}\right) \times 3=\underline{£ 27}$ which is $\frac{3}{5}$

Increase / Decrease by a Fraction

To Increase / Decrease by a fraction, we follow the steps of Fraction of an amount, and we add the result to the starting amount to Increase, or subtract the result from the starting amount to Decrease.

$$
\text { Increase } £ 45 \text { by } \frac{3}{5}
$$

$$
£ 45 \div 5=£ 9 \text { which is } \frac{1}{5}
$$

$£ 9\left(\frac{1}{5}\right) \times 3=£ 27$ which is $\frac{3}{5}$

$$
£ 45+£ 27=£ 72
$$

Decrease £45 by $\frac{3}{5}$

$$
£ 45 \div 5=£ 9 \text { which is } \frac{1}{5}
$$

$£ 9\left(\frac{1}{5}\right) \times 3=£ 27$ which is $\frac{3}{5}$

$$
£ 45-£ 27=£ 18
$$

Find the original amount

To find the original amount, we need to identify how many equal parts we now have. We divide the amount by how many parts we have, and multiply by how many we should have had.

A price was increase by $\frac{3}{4}$ to $£ 70$. How much was the original price?

$$
\frac{4}{4}+\frac{3}{4}=\frac{7}{4}
$$

As we are dealing with $\frac{1}{4} s$,
the original must be $\frac{4}{4}$, and after the increase we have $\frac{7}{4}$
So we divide the amount (£70) by 7 to find $\frac{1}{4}$, and multiply by 4 to find $\frac{4}{4}$ (The original amount)

$$
\begin{aligned}
& £ 70 \div 7=£ 10 \\
& £ 10 \times 4=£ 40
\end{aligned}
$$

Linked Knowledge Maps

Fractions: Introduction, Multiples Primes and Factors, FDP Conversion

INDEX NUMBERS

Keywords: Index / Indices / Power / Exponent / Base / Root / Reciprocal

Definitions/	Index number / Indices (pI) - Description: the small digit to the top right of a number that tells you the number of times that number is multiplied by itself.

Base: the number you apply the power to.

Reciprocal: the inverse of any number except 0 .

Root: root of a number is a number that when multiplied by itself produces the origina number

Knowledge points:	Understand Index notation - squares, cubes and roots	Multiplication Index Law - when multiplying with the same base, ADD the powers	Division Index Law - When dividing with the same base, SUBTRACT the powers	Brackets Index Law - when raising a power to another power, MULTIPLY the powers together	Negative powers - a negative power performs the reciprocal	Fractional Powers - the denominator of a fractional power acts as a 'root' - The numerator of a fractional power acts as the normal power	Power of 0 - Anything to the power of 0 is 1	Changing the Base -
Knowledge point examples:	$\begin{aligned} 3 \times 3 & =3^{2} \\ & =\underline{9} \\ \sqrt{9}= & \pm \underline{3} \\ 4 \times 4 & \times 4 \\ & =4^{3} \\ & =\underline{64} \end{aligned}$	$\begin{aligned} a^{4} \times a^{5} & =a^{4+5} \\ & =\underline{a^{9}} \end{aligned} ~\left(\begin{array}{rl} 5^{6} \times 5^{7} & =\underline{5^{11}} \\ 3 a^{4} \times 5 a^{6} \\ = & =15 a^{10} \end{array}\right.$	$\begin{aligned} a^{6} \div a^{4} & =a^{6-4} \\ & =\underline{\underline{a^{2}}} \\ 5^{10} \div 5^{7} & =\underline{\underline{5^{3}}} \\ 8 a^{4} \div 4 a^{3} & =\underline{\underline{2 a}} \end{aligned}$	$\begin{gathered} \left(a^{3}\right)^{4}=a^{3 \times 4} \\ =\underline{\underline{a^{12}}} \\ \left(5^{4}\right)^{6}=\underline{\underline{5^{24}}} \\ \left(5 a^{3}\right)^{2}=\underline{\underline{25 a^{6}}} \end{gathered}$	$\begin{gathered} a^{-1}=1 / a \\ 5^{-2}=(1 / 5)^{2} \\ =1 / 25 \\ (1 / 4)^{-3}=4^{3}= \\ \underline{\underline{64}} \end{gathered}$	$\begin{aligned} a^{\frac{b}{\bar{c}}} & =(\sqrt[c]{a})^{b} \\ 27^{\frac{2}{3}} & =(\sqrt[3]{27})^{2} \\ & =3^{2} \\ & =\underline{\underline{9}} \end{aligned}$	$\begin{gathered} a^{0}=\underline{1} \\ 6^{0}=\underline{1} \\ 4 a^{0}=4 x \\ 1 \\ =\underline{4} \end{gathered}$	Write as a power of 2 $\begin{gathered} 16^{5}=\left(2^{4}\right)^{5} \\ =2^{20} \end{gathered}$

Linked Knowledge Maps:

Standard Form / Surds / Non-Linear Graphs / Non-Linear Graphs - Quadratic and Cubic

MULTIPLES FACTORS PRIMES

Keywords:	Multiple, factor, prime, divisible						
Definition / Description:	Multiple: a number that is in another number's times table		Factor: A whole number which exactly divides another whole number		Prime: A whole number tha only has 2 factors, itself and		umber that xactly by
Knowledge points:	Multiples Times Tables	Lowest Common Multiple (LCM)		Factors Identify factors of a number	Find Highest Common factors of numbers	Prime numbers Use tests of divisibility to determine whether a number is prime	
Knowledge point examples:	Multiples of 8 are $8,16,24$, 32, 40, 48, 56, 64, Multiples of 10 are $10,20,30$, 40, 50, 60, 70,.....	To find the 8 and 10 lis multiples of 10 and cho the smalles number which in both lists Multiples o 8, 16, 24, 48, 56, 64, Multiples of 10, 20, 30, $60,70, \ldots \ldots$ LCM of 8 a is 40	LCM of the 8 and se ch is 8 are 2, 40, 10 are 40, 50,	Factors of 12 are 1, $2,3,4,6,12$ $\begin{aligned} & 1 \times 12=12 \\ & 2 \times 6=12 \\ & 3 \times 4=12 \end{aligned}$ Factors of 30 are 1, $2,3,5,6,10,15,30$ $\begin{aligned} & 1 \times 30=30 \\ & 2 \times 15=30 \\ & 3 \times 10=30 \\ & 5 \times 6=30 \end{aligned}$	To find the HCF of 12 and 30 , list all the factors of 12 and 30 and choose the highest number which is in both lists Factors of 12 are 1, 2, 3, 4, 6, 12 Factors of 30 are 1, 2, $3,5,6,10,15,30$ HCF of 12 and 30 is $\underline{6}$		exactly 2 factors Non-Prime
Linked Knowledge Maps	Indices						

MULTIPLES FACTORS PRIMES

Keywords: Multiple, factor, prime, prime factor, factor tree, times table, divide, integer, product, divisibility, divisor

Definition / Description:

Knowledge

 points:
Knowledge point

 examples:Multiple: a number that is in another number's times table

Prime Factor decomposition using factor trees Every integer greater than 1 is prime or can be written as the product of prime numbers

Factor: A whole number which exactly divides another whole number

Prime: A whole number that only has 2 factors, itself and 1.

Divisible: One number that can be divided exactly by another number

HCF and LCM using Venn Diagrams

Express this number as a product of its prime factors, in index form.

$36=2 \times 2 \times 3 \times 3$
$36=2^{2} \times 3^{2}$

Prime factorisation

Prime factorisation in index form

LCM and HCF using Venn diaqrams

1) Complete Prime Factorisation 2) Input the Prime Factors into a Venn diagran for both numbers.

2) $\mathbf{H C F}=$ Product of shared factors

$$
2 \times 2 \quad=4
$$

4) $\mathbf{L C M}=$ Product of all factors in the diagram

$$
2 \times 2 \times 3 \times 5=60
$$

Linked Indices

Keywords:

Definition / Description:

Knowledge points:

Knowledge point examples:

Linked

 Knowledge MapsPercentage / conversion / multiplier / equivalent /

Percentage: number of parts per 100.

Percentage of Amount Non Calculator
Methods: Using combinations of 10% / $50 \% / 25 \% / 1 \%$ to find percentages

Key non calculator Percentages
Examples

1. Work out 30% of 155 .
$30 \%=3 \times 10 \%$
$10 \%: 155 \div 10=15.5$
30\%: $15.5 \times 3=46.5$
30% of $155=\underline{46.5}$
2. Calculate 14% of 200
$14 \%=10 \%=4 \times 1 \%$
$10 \%: 200 \div 10=20$
$1 \%: 200 \div 100=2$
$4 \%: 2 \times 4=8$
$14 \%: 20+8=28$
14% of $200=\underline{28}$

Conversion: To change from one form to another

Percentage of Amount Calculator methods: Use decimal multipliers to work out percentages
1.Convert percentages to a decimal by dividing by 100.
2. Multiply amount by decimal
Example:

1. Calculate 40% of 120.
$40 \%=\frac{40}{100}=0.4$

Multiplier: a number which is used to calculate a percentage of an amount or used to increase or decrease by a percentage

Increase by a
 Decrease by a

Percentage: If you start with a given amount (100\%) and you increase it by $x \%$ / then you will end up with $(100+x) \%$ of the original amount.
Example:
To increase $£ 150000$ by 20\% we need to find $120 \%(100+20 \%)$ of £150 000.
Converting to a multiplier 120% of $£ 150000=$ $1.2 \times £ 150000$ 三 $£ 180000$

Percentage: if you start with a given amount (100\%) and you decrease it by $\mathrm{x} \%$ / then you will end up with $(100-x) \%$ of the original amount.

Example:

To decrease $£ 75$ by 30% we need to find 70% (100-30\%) of $£ 75$.
Converting to a multiplier /
70% of $£ 75=0.7 \times £ 75$
$=£ 52.50$

Equivalent: quantities that have the same value but are in different forms

Express one number as a percentage of another

Example:

There are 25 sweets in a bag. 6 of the sweets are orange flavour. What percentage of sweets are orange flavour?
1.Write the proportion of orange sweets as fraction.

6 out of $25=\frac{6}{25}$
2.Convert the fraction
to a percentage.
$\frac{6}{25} \times 100=\frac{6 \times 100^{4}}{25}=24 \%$

Fractions / Place Value Decimals Rounding / Estimation Bounds / FDP conversion

Place value

Keywords: Place value / digit / placeholder / integer /

Definition / Description:

Knowledge

 points:Knowledge point examples:

Place Value: A digits value in relation to its place within a number

Digit: A numeral from 0 to 9

Number lines

A number line is a line on which numbers are presented at intervals / used to illustrate numerical operations

Placeholder: is a significant zero within a number.

Integer is any number that is not a fraction (a whole number).

Place value refers to the place a digit is in the number which gives it a specific value. Place value chart is a table that is used to show the value of each digit in a number based on its position as per the numeral system.

Place Value: Hundreds Tens and Units
We will write down the number of objects in each case below

Decimals - tenths / hundredths and so on
Place value refers to the place a digit is in the number which gives it a specific value. Decimals are the numbers to the right of the decimal point.

Linked Knowledge Maps

Keywords:	Rounding / decimal place / significant figure / estimate /					
Definition / Description:	Rounding: the process of adjusting a number to make it more convenient but still keeping its value as close to what it was.	Decimal Place: The position of a digit after a decimal point	Significant figure: refers to the size of the number within the place value chart and not the physical size of the individual number			ve an f an actual
Knowledge points:	Rounding rules The digit to the right of the digit you are rounding is the deciding digit. If the deciding digit is 5 or above the digit you round up. If the deciding digit is 4 or below the digit you are rounding remains the same	Rounding to the nearest units / ten / hundred etc This refers to the column that is to be rounded within the place value chart. Rounding rules are applied to the deciding digit	Rounding to a given number of decimal places A decimal place refers to the number of digits to the right of the decimal point	Rounding to a given number of significant figures The first significant figure of a number is the first digit which is not a zero. The second / third and fourth significant figures are the digits immediately following the first significant figure / including zeros.		
Knowledge point examples:	1) Round 48 to the nearest 10 4 is in the tens $\xrightarrow{48} \begin{aligned} & 8 \text { is the } \\ & \text { DECIDING DIGIT }\end{aligned}$ (If the deciding digit is greater than or equal to 5 , we round up) So 48 is rounded to 50. 4.6 is closer to 5 so if we rounded 4.6 to the nearest whole number, the answer would be 5 14.67 is closer to 15 so if we rounded 14.67 to the nearest whole number, the answer would be 15	Identify the column where you are being asked to round We are being asked to round to the nearest hundred look at the digit and column to the right of 4 - the tens column The tens digit is ≥ 5, so we must round up 467 to the nearest ten is 500 467 is closer to 500 so if we rounded 467 to the nearest hundred, the answer would be 500	Round 8.24 to the one decimal place We can use a number line to help us decide 8.24 is closer to 8.2 so if we rounded 8.24 to one decimal place, the answer would be 8.2	For This is This is For This is This is Rounding $547 / \mathbf{7}$ 5 or b 547	mple, firs first mple e for third ole nu ? o	

Linked Knowledge Maps

Sequences

Keywords: \quad Arithmetic / nth term / Geometric / Term / Quadratic / Iterate

Definition / Description:	Arithmetic - a sequence where terms are found by adding or subtracting an equal amount.	Nth term - The general rule of a number sequence.	Geometric - A sequence in which you find each term by multiplying the previous term by a fixed value.	Term - a part of an equation, expression or sequence.	Quadratic - A sequence where the difference increases or decrease by an equal amount each time	Iterate - a quantity arrived at by iteration.

Knowledge points:	Nth term of a linear sequence	
Knowledge point examples:	$\mathrm{n}: 1$	2

The nth term of a linear sequence is always of the form $\mathrm{An} \pm \mathrm{b}$, where:
A, is the difference between each term and the next term. b is the difference between the first term and A.

$13-\frac{2 n}{2 n}$
In a descending sequence we find the zero term to discover what we are taking An way from.

Finding terms in a sequence	Nth term of a Quadratic sequence

From the
 Find the nth term in the

sequence
$5,12,19,26,33 \ldots$ work out the $50^{\text {th }}$ term.

The nth term of this sequence is $7 n-2$

Find the 50th term by substituting $\mathrm{n}=50$ into the rule, $7 n-2$
$=7 \times 50-2=$ $350-2=348$.
sequence:
$5,9,15,23 \ldots$

The second differences are constant (2) so the sequence is quadratic and the coefficient of n^{2} is 1 . So the nth term includes $1 n^{2}$. To find the remainder of the nth term, we subtract $1 n^{2}$ from our sequence and find the nth erm of the linear sequence left over:
$\begin{array}{llll}5 & 9 & 15 & 23\end{array}$

1	4	9	16
	5	6	7

$\begin{array}{llll}4 & 5 & 6 & 7 \ldots \text { The nth term of }\end{array}$ this sequence is $n+3$.
Nth term of quadratic sequence $=n^{2}+n+3$

Geometric Progression
Sequences by iteration

Find the first four iterations of the iterative formula
$x_{n+1}=3 x_{n}-2$ with
$x_{1}=2$.
$x_{2}=3 x_{1}-2$
$=3 \times 2-2=4$
$x_{3}=3 x_{2}-2$
$=3 \times 4-2=10$
$x_{4}=3 x_{3}-2$
$=3 \times 10-2=28$
$x_{5}=3 x_{4}-2$
$=3 \times 28-2=82$

[^0]
Keywords: Standard form / Index / Integer

Definition /
Description

Knowledge
point examples:

Standard form is a short-hand way of writing very small or very large numbers, given in the form $\mathbf{a} \times 10^{n}$, where a is a number between 1 and 10

Index (or power) is the small digit to the top right of a number which tells you the number of times a number is multiplied by itself

Integer is a whole number, either positive o negative

Understand correct standard index form: Recognise the correct format for standard form as $\boldsymbol{a} \times 10^{n}$, where $1 \leq \boldsymbol{a}<$ 10

0.25×10^{6} is not correct standard form (a is not ≥ 1)
25.9×10^{8} is not correct standard form (a is not < 10)
$2.36 \times 10^{0.5}$ is not correct standard form (\boldsymbol{n} is not an integer)

Convert between
ordinary numbers and
standard index form:
Use place value to
multiply or divide
numbers by powers of 10

Write in standard form:

 379.4 Answer must be in form $a \times 10^{n}$, so a must be written as 3.794 :$$
3.79 .4
$$

Adjust the place value twice to the right, which is the equivalent of 10 x $10=10^{2}:$

$$
\underline{3.794 \times 10^{2}}
$$

Write as an ordinary number: 2.65×10^{5}
Take the value of \boldsymbol{a} and multiply the value by the value of \boldsymbol{n} :

Compare numbers in standard form Use ordering decimals and indices to compare values of \boldsymbol{a} and \boldsymbol{n}	Add and subtract numbers in standard form Use adjusting standard form to add/subtract	Multiply and divide numbers in standarc form: Use laws of indices to multiply/divide
Which is larger:	Calculate:	
1.45×10^{4}	$7 \times 10^{3}+2 \times 10^{3}$	Calculate: $\left(3.2 \times 10^{2}\right) \times\left(2 \times 10^{4}\right)$ 1.45×10^{3}
Method 1:	[1] Multiply values of	

SURDS

Keywords:	Rational / Irrational / Root / Surd / Expand / Rationalise					
Definition / Description:	Rational - A number that can be expressed as either an integer, a terminating decimal or a fraction	Irrational - A number that cannot be expressed as either an integer, a terminating decimal or a fraction	Root - A root is a quantity that when multiplied by itself a certain number of times equals a given quantity	Surd - An expression that includes a square root	Expand - To multiply out a set of brackets.	Rationalise - To eliminate an irrational number from the denominator of a fraction.
Knowledge points:	Simplify Surds - Simplify by factoring out a square number	Multiply and Divide Surds $\begin{gathered} \sqrt{a b}=\sqrt{a} \times \sqrt{b} \\ \sqrt{a \div b}=\sqrt{a} \div \sqrt{b} \end{gathered}$	Add and Subtract Surds - When adding and subtracting surds the root must be the same number.	Expand Brackets with Surds Multiply each term inside the bracket by the term outside the bracket.	Rationalise the Denominator 1 Create an equivalent fraction where the denominator is rational	Rationalise the Denominator 2 Use a difference o two squares to rationalise
Knowledge point examples:	$\begin{aligned} & \sqrt{75}=\sqrt{25 \times 3} \\ & =\sqrt{25} \times \sqrt{3} \\ & =5 \times \sqrt{3} \\ & =5 \sqrt{3} \end{aligned}$ $\begin{aligned} & \sqrt{18}=\sqrt{9 \times 2} \\ & =\sqrt{9} \times \sqrt{2} \\ & =3 \times \sqrt{2} \\ & =3 \sqrt{2} \end{aligned}$	$\begin{aligned} & \sqrt{6} \times \sqrt{7}= \\ & \sqrt{6 \times 7}= \\ & \sqrt{42} \\ & \sqrt{50} \div \sqrt{10}= \\ & \sqrt{50 \div 10}= \\ & \sqrt{5} \\ & 4 \sqrt{6} \times 2 \sqrt{5} \\ & =4 \times 2 \times \sqrt{6} \times \sqrt{5} \\ & =8 \sqrt{30} \end{aligned}$	$5 \sqrt{2}+2 \sqrt{2}=7 \sqrt{2}$ $\begin{aligned} & \sqrt{75}-\sqrt{27} \\ & =5 \sqrt{3}-3 \sqrt{3} \\ & =2 \sqrt{3} \end{aligned}$ $\begin{aligned} & \sqrt{98}-\sqrt{50} \\ & =7 \sqrt{2}-5 \sqrt{2} \\ & =2 \sqrt{2} \end{aligned}$	$\begin{aligned} & \sqrt{3}(\sqrt{7}+5) \\ & =\sqrt{21}+5 \sqrt{3} \end{aligned}$ $\begin{aligned} & =5+4 \sqrt{5}-2 \sqrt{5}-8 \\ & =2 \sqrt{5}-3 \end{aligned}$	$\frac{2 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}}=\frac{2 \sqrt{3}}{3}$ $\frac{3}{2 \sqrt{5}}=\frac{3 \sqrt{5}}{2 \times 5}=\frac{3 \sqrt{5}}{10}$	$\begin{gathered} \frac{2}{4+\sqrt{2}}= \\ \frac{2(4-\sqrt{2})}{4+\sqrt{2})(4-\sqrt{2})}= \\ \frac{8-2 \sqrt{2}}{4^{2}-(\sqrt{2})^{2}}= \\ \frac{8-2 \sqrt{2}}{12} \end{gathered}$

Linked Knowledge Maps

[^0]: Linked \quad Notation and manipulation / Functions / Multiples, Primes, Factors / Index Numbers Knowledge

