Toynhee Curriculum Knowledge Maps

MATHS

[Data and

Probability]

Keywords:	Trial, Event, Outcome, Random, Experimental probability, Relative frequency, Theoretical probability, Estimate, Independent			
Definition / Description:	Trial: a test or experiment Event: an occurrence or outcome Outcome: possible results of an experiment Random: Something that happens without bias Biased: having a tendency towards something away from the normal Mutually Exclusive: events that cannot happen at the same time Estimate: give an approximation of the actual value Independent: events that do not depend on each other			
Knowledge points -	Experimental probability (Relative frequency): a probability that is determined on the basis of a series of experiments	Theoretical probability: what is expected to happen based on the possible outcomes, assuming equalling likely events	The OR rule: In mutually exclusive events, to find the probability of one event OR another event happening we ADD the probabilities	The AND rule: In Independent events, to find the probability of one event AND another happening, we MUTLIPLY the probabilities
Knowledge point examples:	Experimental Probability is found by repeating an experiment and observing the outcomes. $P($ event $)=\frac{\text { number of times event occurs }}{\text { total number of trials }}$ Example: A coin is tossed 10 times: A head is recorded 7 times and a tail 3 times. $\begin{aligned} & P(\text { head })=\frac{7}{10} \\ & P(\text { tail })=\frac{3}{10} \end{aligned}$	Theoretical Probability is what is expected to happen based on mathematics $P($ event $)=$ \qquad otal number of possible outcomes Example: A coin is tossed. $\begin{aligned} & P(\text { head })=\frac{1}{2} \\ & P(\text { tail })=\frac{1}{2} \end{aligned}$	$P(A \text { OR } B)=P(A)+P(B)$ When two dice are rolled, the probability of getting a 3 OR a 4 = $\begin{aligned} P(3 \text { and } 4) & =P(3)+P(4) \\ & =\frac{1}{6}+\frac{1}{6} \\ & =\frac{2}{6} \\ & =\frac{1}{3} \end{aligned}$	$P(A \text { and } B)=P(A) \times P(B)$ When two dice are rolled, the probability of getting a 3 AND a 4 = $\begin{aligned} P(3 \text { and } 4) & =P(3) \times P(4) \\ & =\frac{1}{6} \times \frac{1}{6} \\ & =\frac{1}{36} \end{aligned}$
Linked Knowledge Maps:	Further Probability Fractions Ratio			

Definition / Description:

Knowledge

 points:Knowledge point examples:

Event: A particular result or set of results amongst the possibilities

Independent: events that have no impact on each other's results.

Dependent: events that have an impact on each other's results.

Conditional: the probability of an event (A), given that another (B) has already occurred

Tree diagrams Independent events: The outcome of the $1^{\text {st }}$ event does not effect the probability of the $2^{\text {nd }}$ event

The probability of it raining on Monday and Tuesday is shown in the tree diagram.
Find the probability it rains on both days: $P(R R)=0.1 \times 0.4=0.04$
Find the probability it rains on one day: $P(N R R)+P(R N R)=0.06+0.36=$ 0.42

Tree Diagrams Dependent events: The probability of the 2nd event is dependent on the outcome of the 1st event

There are 20 boys and 10 girls in a class. Two pupils are chosen at random.
What is the probability that a girl and boy are chosen?
$\mathrm{P}(\mathrm{GB})+\mathrm{P}(\mathrm{BG})=\left(\frac{10}{30} \times \frac{19}{29}\right)+\left(\frac{20}{30} \times \frac{10}{29}\right)=$ $\frac{40}{87}$

Conditional Probability: The probability of second event given the outcome of the first
What is the probability of choosing a boy given they travel by car?
$\frac{9}{13}$

	Walk	Car	Total
Boys	16	9	25
Girls	18	4	22
Total	34	13	47

What is the probability that a student, given they study French, studies Spanish?

Linked	Basic Probability
Knowledge	Fractions
Maps:	Ratio

Keywords: Data / Sample / Frequency Table / Correlation / Discrete Data / Continuous Data

Definitions/	Data: A collection of numbers or Descriptions information

Knowledge

 points:Knowledge point examples:

Sample:
Contains all possible outcomes of an experiment

Pie Chart - uses	Pictogram - a chart		
different sized	that uses pictures or		
sectors of a circle			
to represent data			symbols to represent
:---			
data			

Pie Chart

Frequency
 Correlation: The

Table: An
arrangement of data in columns
connection between two variables

Pictograms:

Discrete Data:

Separate or distinct items of data

Continuous Data: Data that is arranged into groups with no gaps

Scatter Graph compares two variables by plotting one value against the other

Scatter Graphs

Two Way Table - used when handling data to illustrate two variables

Two Way Table

	Boys	Girls	Totals
Running	6	9	15
Swimming	13	12	25
Totals	19	21	40

Dora did a survey of her class whether they prefer running or swimming. She recorded the results in a two-way table

Linked Knowledge Maps:

Statistics - Grouped Data

Keywords:
 Definition / Description:

Histogram / Frequency Density / Class Interval / Distribution / Cumulative / Frequency / Polygon / Median / Interquartile range / Box Plot / Estimated Mean

Cumulative Frequency	Box Plot visually shows
diagram represents a	the distribution of data
running total of	by identifying five point

the distribution of data by identifying five points in a data set

Interquartile range measures the spread of data between the upper and lower quartiles. A small interquartile range shows consistent data

Histogram is a graphical representation of data points organised into ranges

Frequency density is the frequency per unit for the data in each class. It is used to plot histograms

Class interval is the numerical width of any class in a particular distribution, defined as the difference between the upper class limit and the lower class limit

Estimated Mean is the average using midpoints of grouped data

Estimated Mean:

1. Find midpoint of data range
2. Multiply each frequency by this midpoint to find a breakdown of total
3. Add up breakdown of totals o find final tota
4. Divide final total by total frequency

$\begin{aligned} & \text { Speed } \\ & (\mathrm{mph}) \end{aligned}$	Frequency (5)	Midpoint (m)	$f \times m$
$20 \leq s<25$	4	22.5	90
$25 \leq s<30$	10	27.5	275
$30 \leq s<35$	12	32.5	390
$35 \leq s<40$	15	37.5	562.5
$40 \leq s<45$	9	42.5	382.5
	50		1700
Mean $=$ Total sum \div total Frequency			
$=1700 \div 50$			
$=34 \mathrm{mph}$			

$=34 \mathrm{mph}$

