Toynhee Curriculum Knowledge Maps

MATHS

[Algebra]

Sequences

Keywords: Arithmetic / nth term / Geometric / Term / Quadratic / Iterate

Definition / Description:	Arithmetic - a sequence where terms are found by adding or subtracting an equal amount.	Nth term - The general rule of a number sequence.	Geometric - A sequence in which you find each term by multiplying the previous term by a fixed value.	Term - a part of an equation, expression or sequence.	Quadratic - A sequence where the difference increases or decrease by an equal amount	Iterate - a quantity arrived at by iteration.

Knowledge points:	Nth term of a linear sequence	Finding terms in a sequence	Nth term of a Quadratic sequence	Geometric Progression	Sequences by iteration
Knowledge point examples:	 The nth term of a linear sequence is always of the form $\mathrm{An} \pm \mathrm{b}$, where: A, is the difference between each term and the next term. b is the difference between the first term and A. $\begin{array}{lllll} \mathrm{n}: \underbrace{13}_{\underline{13-\frac{2 n}{2 n}}} \underbrace{11}_{-2} & \underbrace{2}_{-2} & \underbrace{3}_{-2} & 4 \\ \underbrace{9} \end{array}$ In a descending sequence we find the zero term to discover what we are taking $A n$ way from.	From the sequence $5,12,19,26,33 \ldots$ work out the $50^{\text {th }}$ term. The nth term of this sequence is $7 n-2$ Find the 50th term by substituting $\mathrm{n}=50$ into the rule, $7 n-2$ $\begin{aligned} & =7 \times 50-2= \\ & 350-2=348 \end{aligned}$	Find the nth term in the sequence: $5,9,15,23 \ldots$ The second differences are constant (2) so the sequence is quadratic and the coefficient of n^{2} is 1 . So the nth term includes $1 n^{2}$. To find the remainder of the nth term, we subtract $1 n^{2}$ from our sequence and find the nth erm of the linear sequence left over: $\begin{array}{llll}5 & 9 & 15 & 23\end{array}$ $14 \quad 9 \quad 16$ 4 5 6 $7 \ldots$ The nth term of this sequence is $\mathrm{n}+3$. Nth term of quadratic sequence $=n^{2}+n+3$	Geometric progression is a sequence of nonzero numbers where each term after the first is found by multiplying the previous one by a number. Find the next two terms of the sequence $3 \underbrace{6}_{x^{2}} \underbrace{12}_{x^{2}} \underbrace{24}_{x^{2}} \ldots$ The term to term rule here is $x 2$ therefore the next two terms are $\begin{aligned} & 24 \times 2=\underline{48} \\ & 48 \times 2=\underline{96} \end{aligned}$	Find the first four iterations of the iterative formula $\begin{aligned} & x_{n+1}=3 x_{n}-2 \text { with } \\ & x_{1}=2 . \\ & x_{2}=3 x_{1}-2 \\ & =3 \times 2-2=4 \\ & x_{3}=3 x_{2}-2 \\ & =3 \times 4-2=10 \\ & x_{4}=3 x_{3}-2 \\ & =3 \times 10-2=28 \\ & x_{5}=3 x_{4}-2 \\ & =3 \times 28-2=82 \end{aligned}$

Linked Notation and manipulation / Functions / Multiples, Primes, Factors / Index Numbers Knowledqe

Keywords:	Expression / Simplify / Term / Variable / Substitute / Coefficient / Equivalent / Solve / Expand / Factorise						
Definition / Description:	Expression: Simplify: an algebraic collect statement terms	Term: part of an expression	Variable: a Subst quantity exchan that can or rep have different values	Coefficient: a number or letter multiplying a term	Solve: find the result	out kets	Factorise: separate into factor
Knowledge points:	Use and interpret notation Use letter symbols to represent unknown numbers in equations	Substitute into formulae Swap letter symbols in formulae for numbers to solve for an unknown	Algebraic vocabulary Understand and use expressions, equations, formulae, identities, inequalities and terms	Simplify expressions Collect like terms, expanding brackets, factorising into brackets	Rearrange formulae Balance terms about the equation sign to make another unknown the subject of the formula	Equiv identi Use prove expre use th symb	lence and es gebra to equivalent sions and identity
Knowledge point examples:	$a b$ in place of $a \times b$ $3 y$ in place of $y+y+y$ and $3 x y$ a^{2} in place of $a \times a, a^{3}$ in place of $a \times a \times a$ $\frac{a}{b}$ in place of $a \div b$	Find the value of x^{2} when $x=5$ When $x=5$, replace the x in x^{2} with 5 to make (5) ${ }^{2}$. $5^{2}=25$	Expression: $a+1$ Equation: $b=a+1$ Formula: $F=m a$ Identity: $2+b \equiv b+2$ Inequality: $a>1$ Term: a or $2 b$	Simplify: $\begin{aligned} & a+b+2 a-2 b \\ & =a+2 a+b-2 b= \\ & 3 a-b \end{aligned}$ Expand: $\begin{aligned} & 3(x+5) \\ & =(3 \times x)+(3 \times 5) \\ & =3 x+15 \end{aligned}$ Factorise: $6 c-8 d$ $=2 \times 3 c-2 \times 4 d$ $=2(3 c-4 d)$	Rearrange: $y=2 x$ +3 to make x the subject $y=2 x+3$ (-3 on both sides) $y-3=2 x$ ($\div 2$ on both sides) $\frac{y-3}{2}=x$	$\begin{aligned} & b x \\ & 2(a \\ & 5 x+ \end{aligned}$	$\begin{aligned} & b \equiv b^{3} \\ & \equiv 2 a+2 \\ & x \equiv 11 x \end{aligned}$

Linked Knowledge Maps

AXES AND CO-ORDINATES

Keywords: Axis / Co-ordinate / Parallel / perpendicular / Gradient / Linear Graph / Reciprocal

Definition / Descriptio

 n:
Knowledge points:

Knowledge point examples:

Linked

Knowledge Maps

Axis: the axes are the reference lines that form the coordinate plane

Co-ordinates and coordinate grid

Co-ordinates: 2 Parallel: lines numbers that that never locate a specific point on a coordinate plane

Plotting graphs from a table

 A linear graph can be draw by substituting values into a table,Perpendicular: Gradient: The Two lines at right angles to one another

Graphs parallel to the y-axis

 A graph parallel to the y-axis will always be of the form $\mathrm{x}=\mathrm{c}$

Linear graph:
A visual representation of a straight line.

Reciprocal: What you multiply a number by to make 1.

Graphs parallel to the x-axis

A graph parallel to the x-axis will always be of the form $y=c$

$(3,5)$
x-co ordinate $\quad y$-co ordinate

Functions / Non-Linear Graphs quadratic and cubic / Non-Linear Graphs other / Solving Linear Equations / Inequalities / Simultaneous equations / Sequences / Transformations / Linear Graphs / Linear Graphs - parallel and perpendicular lines

Keywords:

Functions, input, output, inverse function, composite function, flow charts

Definition /

 Description:
Knowledge

 points:
Knowledge point

 examples:
Linked

 Knowledge MapsA function is a relationship between variables. The inverse function is the reverse process. A composite function is the succession of two functions.

Interpret simple functions as expressions with inputs and outputs

Write down the output y as an expression in terms of \boldsymbol{x}. $y=5 x-8$

Work out the output when the input is 10
$(10-4) \div 2=3$

Understand and use the function notation

Given that $\mathrm{f}(x)=4 x-5$ work out
(a) $\mathrm{f}(-6)$
(b) $\mathrm{f}(0.5)$
(a) $4 x-6-5=-29$
(b) $4 \times 0.5-5=-3$

$$
\begin{aligned}
& 3 x+2=0 \\
& 3 x=-2 \\
& x=-2 / 3
\end{aligned}
$$

$$
g(x)=\frac{7 x-1}{2}
$$

$$
\mathrm{f}(x)=5 x+1, \mathrm{~g}(x)=x^{2}
$$

$$
\begin{array}{ll}
\text { Find } g^{-1}(x) & \mathrm{fg}(x)=f \\
y=\frac{7 x-1}{2} & =5 x^{2}+1
\end{array}
$$

$$
2 y=7 x-1
$$

Interpret and use the composite function the inverse function

$$
\begin{aligned}
& f(x)=3 x+2 \\
& \text { Solve } f(x)=0
\end{aligned}
$$

$$
2 y+1=7 x
$$

$$
x=\frac{2 y+1}{7}
$$

$$
g^{-1}(x)=\frac{2 x+1}{7}
$$

Solving linear equations

INEQUALITIES

Keywords: Inequality, region, solve, equation, variable, linear, quadratic
Definition / An inequality is a statement showing two quantities that are not equal. They can be represented on a number line and on a Description: graph.

Knowledge	Inequality notation Know correct conventions of	Represent Inequalities on a number line

open circle for strict inequality and closed circle for inclusive inequality
x is less than 5

$$
x \geqslant 2
$$

x is greater or equal to 2

$$
x \leqslant 0
$$

x is less than or equal to 0

$$
-3 \leqslant x<5
$$

x is greater or equal to negative 3 , and smaller than 5

$x>1$

```
\(x\) is greater than 1
\[
x<5
\]
Knowledge
point
examples:
```


Solving linear inequalities

Solve inequalities in one and represent solution set on a number line and using set notation.

When we represent (plot) inequalities, we must show whether they include or exclude the starting number.
 a number line
Show inequalities on a number line using correct notation

Graphical Inequalities

Represent inequalities on a coordinate grid

Shade the region on the graph that satisfies the two inequalities: $y \geq x$ and $x<2$

Solve Quadratic inequalities

Solve quadratics and represent answers on a number line and on a graph

$$
x^{2} \leqslant 9
$$

Form \& solve an equation to find the two bounds.

$$
\begin{aligned}
& x^{2}=9 \\
& x=3 \text { or } x=-3 \\
& -3 \leqslant x \leqslant 3
\end{aligned}
$$

Solve the inequality

$$
x^{2}+3 x-4<0
$$

1. Factorise
2. Set $y=0$
3. Sketch function
4. It is <0 so we shade in under the x axis.

$-4<x<1$

Linked Knowledge

Solving linear equations
Solving quadratic equations
Linear graphs
Non linear aranhe incluidinc nuadratie

SOLVING EQUATIONS

Keywords:	Solve / Equation / Coefficient / Inverse / Equal / Linear Equation						
Definition / Description:	Solve: To find the answer/value of something	Equation: A mathematical statement that shows two things are equal		nt: A letter an term	Inverse: The reverse or opposite	Equal: An equals sign shows the equality between two expressions	Linear Equation: An equation where no variable has a power greater than one
Knowledge points:	Solve simple linear equations by using inverse operations Solve simple linear equations with integer coefficients where the unknown appears on one or both sides of the equation or where the equation involves brackets Set up a simple linear equation to solve problems						
Knowledge point examples:	$\begin{gathered} \text { One Step } \\ 3 \mathrm{a}=15 \\ (\div 3) \quad \begin{array}{l} (\div 3) \\ a=5 \end{array} \end{gathered}$	$\begin{gathered} \text { Two Ste } \\ 4 \mathrm{a}-3= \\ (+3) \\ 4 \mathrm{a}=2(\\ (\div 4) \quad \\ a=5 \end{gathered}$		$\begin{aligned} & \text { Witt } \\ & 2(\mathrm{a} \\ & 2 \mathrm{a} \\ & (-6) \\ & { }^{(-6)} \\ & (\div 2) \end{aligned}$	Brackets $\begin{aligned} & 3)=11 \\ & 6=11 \\ & =5^{(-6)} \\ & =2.5^{(\div 2)} \end{aligned}$	Unknowns on both sides $\begin{gathered} 3 a+7=5 a+11 \\ (-3 a) \\ 7=2 a+11 \\ (-11) \\ -4=2 a \\ (-11) \\ (\div 2) \\ \\ \\ (-3 a) \end{gathered}$	Forming and solving equations: Jack is y years old. His brother John is 5 years older than him. The sum of their ages is 21 . How old is Jack? $\begin{gather*} y+y+5=21 \\ 2 y+5=21 \tag{-5} \end{gather*}$ (-5) $\begin{aligned} & 2 y \end{aligned}=16$ Jack is 8 years old

Linked Knowledge Maps:

Algebraic Manipulation and Notation / Linear Graphs / quadratic equations / inequalities / simultaneous equations / linear sequences

Keywords: Axis / Co-ordinate / Parallel / perpendicular / Gradient / Linear Graph / Reciprocal

Definition / Descriptio n:

Knowledge

 points:
Knowledge

 point examples:
Linked Knowledge Maps

Co-ordinates:
 2 numbers that locate a never meet another

 specific point on a coordinate plane
Parallel line:s

Lines that have the same gradient

Finding the equation of a parallel line

Parallel line have the same gradient no matter the intercept

Perpendicular lines

Perpendicular lines meet or join at right angles

Negative reciprocal
If if the gradients of two lines have a product of -1 they are perpendicular.

Gradient of the line	Gradient of the perpendicular line
3	$-1 / 3$
-2	$1 / 2$
$-1 / 4$	4
$4 / 5$	$-5 / 4$

Gradient: The steepness of a line
 Linear graph: A visual representation of a straight line.

Recipro What yo multiply number make 1.

Finding the equation of a perpendicular line
Find the gradient of the perpendicular line by finding negative reciprocal.

Find the equation of the line perpendicular to the line $y=1$ and passes through the points $(-4,4)$
Gradient of the $\quad \mathrm{m}=-2$
Sub in (3,5) into the $\quad y=-2 x+$
equation:
$4=-2(-4)+c$
$4=8+c$
$c=-4$

Functions / Non-Linear Graphs quadratic and cubic / Non-Linear Graphs other / Solving Linear Equations / Inequalities / Simultanec equations / Sequences / Transformations / Linear Graphs/ Axes and Coordinates

Keywords: Axis / Co-ordinate / Parallel / perpendicular / Gradient / Linear Graph / Reciprocal

Definition /
Descriptio
$\mathrm{n}:$

Knowledge

 points:
Knowledge point examples:

Axis: the axes are the reference lines that form the coordinate plane

Co-ordinates: 2 numbers that locate a specific point on a coordinate plane

Parallel:
lines that never meet.

Perpendicular:
Two lines at right angles to one another

Gradient:
The
steepness of a line

Linear graph:
A visual representation of a straight line.

Reciproc What you multiply a number b) to make 1

Intercepts

These are the points at which the line meets/crosses an axes

The equation Finding the equation of a of a line line from 2 points
$\mathrm{y}=\mathrm{mx}+\mathrm{c}$
$\mathrm{M}=$ gradient
C $=\mathrm{y}$-intercept
To begin find the gradient. Next substitute one coordinate into the equation to find the y-intercept
Find the equation of the line w passes through (3,6) and (2,2 Step 1 Calculating the gradien $\frac{\text { Diff in } y}{\text { Diff in } x}=\frac{6-2}{3-2}=\frac{3}{1}=3$
Step 2 Form the equation $y=3 x+c$
Step 3 Find the y-intercept
Substitute one of the co-ordinates into the equation $(3,6)$

$$
6=3(3)+c
$$

$$
c=-3
$$

Step 4 Complete the equation

$$
y=3 x-3
$$

Linked
 Knowledge Maps

Functions / Non-Linear Graphs quadratic and cubic / Non-Linear Graphs other / Solving Linear Equations / Inequalities / Simultanec equations / Sequences / Transformations Linear Graphs - parallel and perpendicular lines / Axes and Coordinates

Non linear graphs

Keywords:
 Reciprocal / Asymptote / Exponential / Growth and decay / Radius / Non-Linear

Definition / Description:

Knowledge points:

Knowledge point examples:

Use the table to plot the graph

$$
y=1 / x
$$

x	-4	-3	-2	-1	1	2	3	4
y	$-\frac{1}{4}$	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	1	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$

Linked Non-Linear Graphs quadratic and cubic / Linear Graphs / Functions /

Reciprocal: The Asymptote: the inverse of any distance between a number except 0 curve and a line which approaches but never touches zero

Reciprocal graph: remember the asymptote to the curve as we cannot divide by 0

Exponential: a function, where we use repeated multiplication on an initial value to get the output

Exponential Graph: An exponential graph in the form $y=a^{x}$ will cross the y axis at the point $(0,1)$

Radius: The distance between the centre of a circle and it's circumference

Non-Linear: A graph which does not have a consistent gradient

Equation of a circle: The equation of a circle with the centre $(0,0)$ is expressed in the form: $x^{2}+y^{2}=r^{2}$

Use the table to plot the graph

$$
y=2^{x}
$$

x	-3	-2	-1	0	1	2	3
y	0.125	0.25	0.5	1	2	4	8

The following circles all have centre $(0,0$
Write down the equations of the circles.

$$
\begin{aligned}
\text { Radius } & =5 & & \text { Radius }=\frac{1}{8} \\
x^{2}+y^{2} & =25 & & x^{2}+y^{2}=\frac{1}{64}
\end{aligned}
$$

Non-linear Graphs - quadratic and cubic
Keywords: Quadratic / Parabola / Substitute / Cubic / Root / Solution

Definition / Description:
 Quadratic expression
 contains terms up to and including x^{2}

Knowledge points:

A Parabola is a curved graph formed from a quadratic equation. A parabola has a line of symmetry

Substitute:

Exchange or replace variables
with amounts

Roots or solutions: of graphs are the values of x-coordinates of the poin where the graph crosses the x-axis

Plotting graphs:

1. Complete a table of values for a graph, substituting different values of x to find the y coordinate
2. Join the points with a smooth line to create a curve

Linked	Linear Graphs
Knowledge	Non-linear graphs - reciprocal, exponential and circle
Maps	Solving Quadratic equations

Cubic expression contains

 terms up to and including x^{3}3. Label the graph

Knowledge point
 Positive Quadratic in the form $y=x^{2}$

 examples:| |
| :--- |
| Knowledge |
| point |

Negative quadratic in the Positive cubic graph $y=x^{3}$ form $y=-x^{2}$

Negative cubic graph $y=-x^{3}$

Complex cubic graph

Solving Quadratic Equations

Keywords: Quadratic Equation / Solution / Formula / Factorise / Discriminant

Definition / Descriptio n:	Quadratic Equation: An equation where the maximum power is two	Solution: The answer to a quadratic equation	Formula: An equation to fund quantities when giv certain values	Factorise: To break up or to separate into factors	Discriminant: the part of the quadratic formula underneath the square root symbol
Knowledge points:	Solving by factorising Use the product and sum	Solving when not equal to zero	Solving by completing the square	Solve using the quadratic formula - Use thew $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$	Finding the amount of solutions a quadratic equation has. The value of the discriminant shows the amount of solutions a quadratic equation has
Knowledge point examples:	Factorise and solve $g^{2}+11 g+24=0$ Factors of 24 1 and 24 $\begin{gathered} g^{2}+11 g+24 \equiv \\ (g+3)(g+8) \\ (g+3)(g+8)=0 \\ g=-3 \text { and } g=-8 \end{gathered}$	A quadratic equation can only be solved when equal to zero Factorise and solve: $\begin{array}{r} x^{2}+6 x+10= \\ -2 \\ x^{2}+6 x+8=0 \\ (x+4)(x+2)=0 \\ x=-4 \text { or }-2 \end{array}$	Use $\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c$ To complete the square before solving: $\begin{gathered} x^{2}+8 x+6=0 \\ (x+4)^{2}-10=0 \\ (x+4)^{2}=10 \\ (x+4)= \pm \sqrt{10} \\ x= \pm \sqrt{10}-4 \end{gathered}$	Solve $3 x^{2}+8 x-5=0$ using the quadratic formula To 3 S.F $\quad a=3 b=8 c=(-5)$ $\begin{aligned} & x=\frac{-8 \pm \sqrt{(64-4 \times 3 \times-5)}}{2 \times 3} \\ & x=\frac{-8 \pm \sqrt{124}}{6} \\ & x=0.523 \text { or } x=-3.19 \end{aligned}$	$b^{2}-4 a c>0$ 2 solutions $3 x^{2}-4 x-3=0$ $b^{2}-4 a c=$ $(-4)^{2}-4 \times 3 \times(-3)=52$ Two Solutions $b^{2}-4 a c=0$ 1 solution $\begin{gathered} 16 x^{2}+16 x+4=0 \\ b^{2}-4 a c= \end{gathered}$ $16^{2}-4 \times 16 \times 4=0$ $\frac{\text { One solution }}{b^{2}-4 a c<0}$ $b^{2}-4 a c<0$ No real solutions $\begin{gathered} 4 x^{2}+3 x+2 \\ b^{2}-4 a c= \end{gathered}$ $3^{2}-4 \times 4 \times 2=-23$ No real solutions

Linked Knowledge Maps

Multiples, Primes, Factors / Notation and manipulation / Non-Linear Graphs quadratic and cubic / Solving Linear Equations /
Inequalities / Sequences / Simultaneous equations

SIMULTANEOUS EQUATIONS

Linked Solving Linear Equations / Non-Linear Graphs quadratic and cubic / Solving Quadratic Equations / Linear Graphs Knowledge Maps

