Year 8: Coasts

Wave*t*

formation - Waves are created by wind blowing over the surface of the sea. As the wind blows over the sea, friction is created - producing a swell in the water.

Size – Determined by the fetch which is how far the wave has travelled, the strength of the wind and how long the wind has been blowing for.

Contructive wave - This wave has a swash that is stronger than the backwash. This therefore builds up the coast.

Dertructive wave - This wave has a **backwash that is stronger** than the swash. This therefore erodes the coast.

Why do waves break?

1. Waves start out at sea.

- 2. As waves approaches the shore,
- friction slows the base.
- 3. This causes the orbit to become elliptical.
- 4. Until the top of the wave breaks over.

Deposition - When the sea or loses energy, it drops the sand, rock particles and pebbles it has been carrying. This is called deposition.

Ero/ion -The break down and transport of rocks –

smooth, round and sorted.

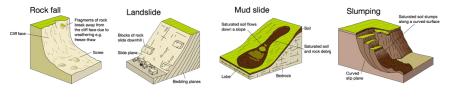
Attrition - Rocks that bash together to become smooth/smaller.

Solution - A chemical reaction that dissolves rocks. **Abra***i***on** - Rocks hurled at the base of a cliff to break pieces apart.

Hydraulic Power - Water enters cracks in the cliff, air compresses, causing the crack to expand.

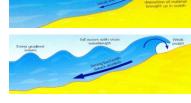
Carbonation - Breakdown of rock by changing its chemical composition. Mechanical - Breakdown of rock without changing its chemical composition.

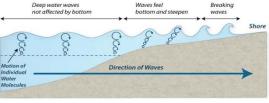
Weathering



Weathering is the breakdown of rocks where they are.

Mass Movement


A large movement of soil and rock debris that moves down slopes in response to the pull of gravity in a vertical direction.


- 1. Rain saturates the permeable rock above the impermeable rock making it heavy.
- 2. Waves or a river will erode the base of the slope making it unstable.
- 3. Eventually the weight of the permeable rock above the impermeable rock weakens and collapses.
- 4. The debris at the base of the cliff is then removed and transported by waves or river.

Transportation

Solution - Minerals dissolve in water and are carried along.
Surpension - Sediment is carried along in the flow of the water.
Saltation - Pebbles that bounce along the sea bed.
Traction - Boulders that roll along a river/sea bed by the force of the flowing water.

Solution: dissolved

Traction: large pebbles

along the seabed

chemicals often derived

from limestone or chalk

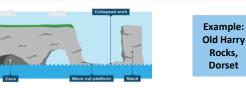
Suspension: particle

carried (suspended)

within the water

'bouncing' motion of particles

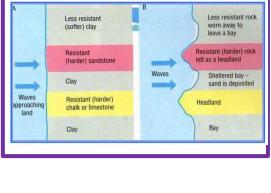
too heavy to be suspended


formation of Coastal Spits

A spit is a long, narrow finger of sand or shingle jutting out into the sea from the land.

- 1) Swash moves up the beach at the angle of the prevailing wind.
- 2) Backwash moves down the beach at 90° to coastline, due to gravity.
- 3) Zigzag movement (Longshore Drift) transports material along beach.
- 4) Deposition causes beach to extend, until reaching a river estuary.
- 5) Change in prevailing wind direction forms a hook.
- 6) Sheltered area behind spit encourages deposition, salt marsh forms.

Caves, arches and stacks



1. Hydraulic action widens cracks in the cliff face over time.

- 2. Abrasion forms a wave cut notch between HT and LT.
- 3. Further abrasion widens the wave cut notch to from a cave.
- 4. Caves from both sides of the headland break through to form an arch.
- 5. Weather above/erosion below –arch collapses leaving stack.
- 6. Further weathering and erosion eaves a stump.

Bays and Headlands

- 1) Waves attack the coastline.
- 2) Softer rock is eroded by the sea quicker forming a bay, calm area cases deposition.
- More resistant rock is left jutting out into the sea. This is a headland and is now more vulnerable to erosion.

Coastal Defences

Hard Engineering Defencer

Groyne <i>t</i>	Wood barriers prevent longshore drift, so the beach can build up.	 Beach still accessible. No deposition further down coast = erodes faster. 	
Sea Wall/	Concrete walls break up the energy of the wave . Has a lip to stop waves going over.	 Long life span Protects from flooding Curved shape encourages erosion of beach deposits. 	
Gabion/ or Rip Rap	Cages of rocks/boulde rs absorb the waves energy, protecting the cliff behind.	 Cheap Local material can be used to look less strange. Will need replacing. 	
Soft Engineering Defencer			
Beach Nouri/hm ent	Beaches built up with sand, so waves have to travel further before eroding cliffs.	 Cheap Beach for tourists. Storms = need replacing. Offshore dredging damages seabed. 	
Managed Retreat	Low value areas of the coast are left to flood & erode.	 Reduce flood risk Creates wildlife habitats. Compensation for land. 	

