
Searching Algorithms

Linear Search Algorithm

• The purpose of the linear search algorithm is to find a target item

within a list.
• Compares each list item one-by-one against the target until the

match has been found and returns the position of the item in the
list.

• If all items have been checked and the search item is not in the
list then the program will run through to the end of the list and
return a suitable message indicating that the item is not in the
list.

• The algorithm runs in linear time. If n is the length of the list,
then at worst the algorithm will make n comparisons. At best it
will make 1 comparison and on average it will make (n+1)/2
comparisons.

• The performance of the algorithm will be improved if the target
item is near the start of the list.

Example
Find the position of letter “Z” within the following list. Assume we do
not have visibility of the list

Index
position

0 1 2 3 4 5 6 7

Value V A S Z X R T G

We compare it with the value in index position 0. We find that the
value is ”V” so we need to move on to the next index position. At
index position 1 and 2 we still have not found Z. However, we get to
index position 3 and we compare the target with the value and we
find that they match, so the algorithm returns the index position and
stops.

Pseudocode
 i ← 0

 x ← len(listOfItems)

 pos ← -1

 found ← False

 WHILE i < x AND NOT found

 IF listOfItems[i] == itemSearch THEN

 found ← True

 pos ← i + 1

 ENDIF

 i=i+1

 ENDWHILE

 OUTPUT pos

Binary Search Algorithm

• The binary search algorithm works on a sorted list by identifying

the middle value in the list and comparing it with the search
item.

• If the search item is smaller the mid element becomes the new
high value for the search area.

• If the search item is larger the mid element becomes the low
value for the search area.

• The keeps repeating until the search item is found.
• When the search item is found the index position of the item is

returned.
• At each iteration the search are halved in size consequently this

is an efficient algorithm.

Example: Binary search in operation to find 81

Pseudocode

low ← 1

high ← LENGTH(arr)

mid ← (low + high) DIV 2

WHILE val ≠ arr[mid]

 IF arr[mid] < val THEN

 low ← mid

 ELIF arr[mid] > val THEN

 high ← mid

 ENDIF

 mid ← (low + high) DIV 2

 ENDWHILE

OUTPUT mid

Linear search versus binary search

 Advantages Disadvantages

Linear
Search

• Very simple
algorithm and easy
to implement

• No sorting required
• Good for short lists

• slow because it
searchers through the
whole list

• very inefficient for long
lists

Binary
Search

• much quicker than
linear search,
because it halves the
search zone each
step

• The list need to be
ordered

