

8.2 Representations

This unit conveys essential knowledge relating to binary representations. The activities gradually introduce learners to binary digits and how they can be used to represent text and numbers. The concepts are linked to practical applications and problems that the learners are familiar with.

Binary	A number system that contains two symbols, 0 and 1. Also known as base 2	Convert 8 bit Binary to Denary Example: convert the Binary number 01000110 into Denary. 1. Create a binary table:							Denary.		
Denary	The number system most commonly used by people. It contains 10 unique digits 0 to 9. Also known as decimal or base 10		128	64	32	16	8	4	2	1	Answe
Hexadecimal	A number system that contains sixteen symbols, 0-9 and A-F. Also known as base 16	 2. Add the binary number: 128 64 32 16 8 4 2 1 An 0 1 0 0 0 1 1 0 3. Add up all the numbers with a 1 underneath them to g answer! 							Answe		
Place value / placeholder	The value of the place, or position, of a digit in a number								n to get t		
Character set	A mapping of keyboard characters to numbers used to represent those keyboard characters in a computer system		128 0	64 1	32 0	16 0	8 0	4	2 1	1 0	Answe 70
ASCII	American Standard Code for Information Interchange. A 7-bit character set for representing English keyboard characters.	Convert Denary to 8 bit Binary Example: convert the Denary number 45 into binary . 1. Create a binary table:									
Pixel	The smallest identifiable area of an image or computer screen		128	64	32	16	8	4	2	1	Answe
Bit	A single symbol in a binary number. Either 1 or 0										45
Bit pattern	Any sequence or more than one bit	z.	Place 128	e the nu	32	1 unde 16	8 ach	numbe	r you n	eed to	make up
Nibble	A bit pattern which is four bits long				1		1	1		1	45
Byte	A bit pattern with which is eight bits long	3.	Add	a 0 for	the un	used n	00101		inary n	umber	is:
Kilobyte	1000 bytes		128	64	32	16	8	4	2	1	Answe 45
Megabyte	1000 kilobytes	Ľ	U	U	1	U	1	1	U		

	128	64	32	16	8	4	2	1	Answer
i								-	
2.	Add	the bi	nary nu	umber:		_	_		
	128	64	32	16	8	4	2	1	Answer
1	0	1	0	0	0	1	1	0	
3.	Add answ		the nu	mbers	with a	1 unde	erneat	h ther	n to get the
3.		ver!		mbers		1 unde	erneat	h ther	n to get the Answer

128	64	32	16	8	4	2	1	Answe
								45

128	64	32	2 16	8	4	2	1	Answer		
		1		1	1		1	45		

128	64	32	16	8	8 4	2	1	Answer
0	0	1	0	1	1	0	1	45

What is Binary?

Binary is a number system that only uses two digits: 1 and 0. All information that is processed by a computer is in the form of a sequence of 1s and 0s. Therefore, all data that we want a computer to process needs to be converted into binary.

