
GCSE COMPUTER SCIENCE
FINAL BOSS STRATEGY GUIDE
Master key concepts to overcome toughest challenges

WELCOME TO THE FINAL
BOSS STRATEGY GUIDE!

Exam as Final Boss

View the EdExcel GCSE Computer Science exam
as an epic final boss battle to conquer.

Level Up Skills

Level up your skills and gather powerful revision
tools to prepare for the challenge.

Tactics for Success

Learn tactics and use resources to defeat both
theory and programming exam papers.

Confidence and Competence

Build confidence and competence to tackle the
exam with the mindset of a coding wizard or
theory knight.

KNOW YOUR ENEMY: THE EXAM

Exam Structure Overview

The EdExcel GCSE Computer Science exam has two
key parts: Paper 1 theory and Paper 2 programming.

Paper 1 Computer Theory

Paper 1 covers Computational Thinking, Data,
Computers, Networks and Issues a& Debates

Paper 2 Programming Skills

Paper 2 tests Python coding, algorithms, and
computational thinking with hands-on problem
solving.

Effective Exam Strategy

Balancing revision for both papers and
understanding command words is key to success.

LEVEL UP: GRADE
BOUNDARIES

Grade 7 Achievement Goal

Scoring about 91 out of 150 marks across theory and programming unlocks the
Grade 7 achievement.

Marks as Experience Points

Each correct answer is like XP, bringing you closer to levelling up in your exam
performance.

Using Past Papers

Past papers and mark schemes help identify examiners’ expectations and weak
spots to target your study.

Tracking Progress and Strategy

Monitoring progress and weaknesses refines your strategy for better exam
results and critical success.

A business employs 20 people.

Each employee has a laptop. The business is relocating to a new office
building. Employees need to access resources and connect to the
internet.

Discuss the type of network the business should install in its new
building.

Your answer should consider: • transmission media • network topology.

You do not need to consider cost of materials or installation

A binary search algorithm looks for a target in a sorted array. Here is an array of numbers.

Complete the table to show the steps of a binary search algorithm to look for the number 78, which is not in
the array.

You must show the calculation of the mid-point. You may not need to fill in all the rows in the table. (6)

Suggested time: 25 minutes 6

A program is required to process data about cows.

The data is stored in a comma separated value text file named Cows.txt

The columns in the data file are: • name • breed • tag number.

Open file Q06.py Write a program to meet these requirements:

• create a key for each cow in the data. A valid key is a single string consisting of (in this order)– the first two letters of
the breed name– the tag number integer divided by 100– the first two letters of the cow’s name

• create a record for each cow. A valid record consists of (in this order)– a key, a tag number, a name and a breed •
store the record for each cow in the cowTable

• call the supplied subprogram, showTable(), to display the contents of the cowTable

• the program must work with any number of lines in the data file.

Use comments, white space and layout to make the program easier to read and understand.

Do not add any additional functionality.

Save your amended code as Q06FINISHED.py

(Total for Question 6 = 15 marks)

POWER-UP: THEORY REVISION

Effective Study Techniques

Flashcards, mind maps, and scenario-based questions
boost memory and visualize topic connections effectively.

Avoiding Overload Trap

Break complex topics into chunks and revisit them
regularly to avoid memorization overload.

Glossary and Context Application

Equip yourself with a glossary of key terms and practice
applying them in context for exam readiness.

MASTER THE CODE:
PROGRAMMING

Practice Coding Regularly

Regularly write and debug code to strengthen your
programming skills and prepare for exams effectively.

Use Trace Tables

Employ trace tables to follow algorithm logic and identify
syntax and logical errors accurately.

Plan with Flowcharts and Pseudocode

Map out logic visually with flowcharts and pseudocode to
avoid errors before coding begins.

